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ABSTRACT
The hospital system in many countries experiences capacity shortage, which results
in poor access to healthcare in certain parts of the country. Moreover, rapid urban-
ization, which creates many new population centers, has exacerbated the imbalance
between care need and service capacity. One way to address the challenge is to con-
duct capacity expansion and spatial redistribution. In this research, we studied the
problem of optimal decision making for locating new hospitals in a two-tier hospi-
tal system comprising both central and district hospitals, and upgrading existing
district hospitals to central hospitals, with incorporation of patient preferences on
seeking care. We first formulated the problem with a discrete location optimiza-
tion model to minimize the total cost (i.e., a weighted sum of travel cost, waiting
cost, and government spending). Then we constructed a multinomial logit model
with real-world data to characterize hospital choice behaviors, and quantify patient
arrival rates at each hospital accordingly. We also developed a multi-hospital queue-
ing network model to analyze the impact of hospital locations on patient flows. By
solving the resultant nonlinear combinatorial optimization problem via a genetic
algorithm, we verified the effectiveness of hospital location reconfiguration and con-
firmed the influence of individual-specific attributes (e.g., insurance type and balking
tendency).

KEYWORDS
Healthcare service system; Network redesign; Location; Patient choice; Queuing

1. Introduction

There is a significant discrepancy between patient need and provider capacity in many
major metropolises worldwide such as Shanghai. The 2017 Shanghai Statistics Year
Book (available from www.tjj.sh.gov.cn/) shows that the annual volume of hospi-
tal visits in Shanghai is as high as 273.423 million. On the other hand, the number
of licensed physicians and assistant physicians in Shanghai is only 2.31 per thousand
people, ranking behind most municipalities and provincial capitals in China (available
from www.spcsc.sh.cn/). Healthcare resource scarcity has become a major social issue
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in Shanghai. Furthermore, with rapid development of industrialization and urbaniza-
tion, major metropolises in China have expanded significantly and urban populations
have dispersed with new residential communities sprouting in inter-city and suburban
areas. This contributes to the imbalance of healthcare resource distribution among
sections of the metropolises. In these places, hospitals are mainly located in central
cities whereas inter-city and suburban areas lack healthcare resources.

Like in many other countries, the healthcare system in China consists of central
hospitals (CHs) and district hospitals (DHs). CHs have a high reputation with majority
of the most qualified specialists, and are mainly concentrated in the central urban
area. On the other hand, DHs provide basic medical services, and they are located at
various communities. For outpatient care, Chinese patients typically choose hospitals
based on their preferences, and CHs are often more attractive to them due to high
reputation. However, for its limited capacities, CHs are always overcrowded, resulting
in long waiting times. In addition, since CHs are mostly located in central city, patients
from inter-city or suburban areas, which can be far from the city center, have to
travel long distances. Overall resource scarcity and regional capacity maldistribution
have motivated a series of reforms in recent years to address the challenge in care
access, one of the fundamental challenges to the Chinese healthcare system. Besides
outpatient services, effectiveness of preventive care is also greatly influenced by poor
access (Vidyarthi and Kuzgunkaya 2015; Zhang, Berman, and Verter 2012).

To combat the above challenge, one viable way is to finance necessary care capacity
expansion especially in new population centers. This can be achieved by simply opening
more hospitals or by converting DHs to CHs (i.e., upgrading). In this paper, we develop
a framework for mathematically analyzing the decision issue related to reconfiguring
a network of CHs and DHs. We thus consider the following government investment
decisions: (1) locate more CHs and DHs to increase care capacity; and (2) upgrade
DHs to CHs for the same purpose. With increased and better distributed care capacity
in the hospital network, we expect an overall improvement in care access (e.g., reduced
waiting time and travel distance). Our objective is to redesign the hospital network
such that the resultant access improvement and government spending can reach some
desired compromise, e.g., their sum can be minimized. Furthermore, in the hospital
system, patients seeking outpatient services have choices to different points of access
to care as they like, thus demand from the same location will split between medical
facilities. Therefore, patient choice behavior in the system with two types of hospitals
is a critical part of our modeling. We consider hospital choice behavior modeling of
two classes of patients identified by their insurance type.

The following questions were answered in our research. One, what is the effect of
hospital types and distance to hospitals on hospital choice behavior of either class
of patients? Two, what is the influence of hospital choice on the performances of a
hospital system consisting of CHs and DHs? Three, what is the optimal design of
the hospital system? To answer these questions, we first modeled the hospital choice
behavior under the influence from locations of CHs and DHs. We conducted a survey
which includes a choice experiment on hospital visit for some outpatient service by
assessing respondents’ reactions to hospital types and distances to hospitals, and then
developed a multinomial logit model (MNL). To answer the second question, we built a
queuing network considering patient balking behavior, and then applied queue theory
to derive closed-form expressions of operational performance measures (i.e., balking
probability, utilization rate, and average waiting time) with respect to the location
of CHs and DHs and upgrade decision of DHs. Finally, we formulated a nonlinear
optimization model to select appropriate locations for new CHs and DHs and upgrade
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some of the existing DHs, so as to achieve optimality in minimization of the weighted
sum of patient travel, waiting, and government spending on the system reconfiguration.

This paper makes two main contributions: (1) We embedded a discrete choice model
into an optimal location problem with different streams of service requests and different
types of service facilities; and (2) We obtained real-world experimental data from
Shanghai, the target catchment area, for the quantification of two known influential
factors, hospital type and distance to hospital, on patient choice of hospital visitation
for outpatient services. To the best of our knowledge, both contributions above are
rare practice in the OR/MS literature. In addition, we considered not only building
new hospitals but also upgrading existing DHs, which coincides with the expectation
set by the Shanghai municipal government.

The remainder of this paper is organized as follows. In Section 2, we review the
relevant literature. In Section 3, we present an optimization model for redesign of the
hospital network. To support this, we present a patient hospital choice model and a
multi-hospital queueing network model in this section. In Section 4, we report our
optimal hospital network design of real-world cases based on Shanghai. Finally we
draw conclusions and outline future research in Section 5.

2. Literature review

There have been numerous location analysis studies in healthcare planning. According
to the classification of Daskin (2008), the discrete location models appear in the health-
care systems literature can be divided into three categories: covering-based models,
median-based models, and other models such as the p-dispersion model. Covering-
based and median-based models are the basis of models used in healthcare applica-
tions. For review of these classical problems, we refer readers to Daskin and Dean
(2005), Berg (2013) and Ahmadi-Javid, Seyedi, and Syam (2017). For example, many
researchers addressed the objective of maximizing the total demand covered by a given
number of facilities (e.g. Griffin, Scherrer, and Swann 2008; Shariff, Moin, and Omar
2012; Kim and Kim 2013), or minimizing the distance or travel time when demand
locations are assigned to facilities within a certain distance (e.g. Stummer et al. 2004;
Mitropoulos et al. 2006; Beheshtifar and Alimoahmmadi 2015; Mestre, Oliveira, and
Barbosa-Póvoa 2015).

A critical aspect of medical facility location analysis is modeling patient choice and
its impact on the location decisions. Studies on patient choice are divided into two
categories. In the first category, studies assume a directed-choice (or system-optimal)
mechanism, i.e., patients are assigned to a medical facility by the decision maker,
rather than users choosing the facility to access. These models determine the optimal
location of facilities and assign patients to selected facilities. For example, in Shariff,
Moin, and Omar (2012), patient demand is assigned to a facility within some allowable
distance, and is assumed to be allocated to one facility at most. Other studies that
take the allocation of demand as a decision variable include Rahmaniani, Rahmani-
ani, and Jabbarzadeh (2014); Beheshtifar and Alimoahmmadi (2015); Vidyarthi and
Kuzgunkaya (2015); Hajipour et al. (2016).

In the other category, studies assume a patient-choice mechanism, i.e., patients are
free to choose a medical facility to visit. This category can be further categorized as
deterministic-choice and probabilistic-choice models. For deterministic-choice models,
the patient choice behavior is simplified, namely each patient is assumed to visit the
most attractive facility. This requires patients to be rational and fully informed, and

3



they will visit the most attractive facility they think at all times. For example, Kim and
Kim (2013) studied the problem of locating public healthcare facilities to maximize
the number of served patients of two types (low- or high-income). The authors only
considered the preferences of high-income patients and assumed that they are only
allocated to most preferred facilities. The authors modeled the preference of high-
income patients on each facility to be dependent on several factors, including distance
to travel and service spending. Instead of analyzing the influence of each factor, the
authors simply used a given parameter between 0 and 1 to represent patients’ prefer-
ences, and assumed patients from the same region to have identical preference. Some
other studies assume that patients visit the facility closest to them (e.g. Verter and
Lapierre 2002), and some studies assume patients visit the facility with the minimal
expected total time, including the travel time plus the expected time spent at the
facility (e.g. Zhang, Berman, and Verter 2009; Zhang et al. 2010).

For probabilistic-choice models, a patient is assumed to visit each facility with a
certain probability, which is based on the attractiveness of the facility. Huff (1964)
presented the first probabilistic-choice model, which is for a spatial interaction analysis.
In the model, client utility is represented by a gravity formula to estimate market
shares of the facilities. Later, extensions of Huff (1964) appeared in location analysis
such as the multiplicative competitive interaction model by Aboolian, Berman, and
Krass (2007). In addition, there are other ways of incorporating probabilistic-choice
model. Related to our work, discrete choice models, based on random utility theory
common in marketing and econometrics, have been incorporated into location models.
For example, to maximize the total participation of preventive healthcare (PH), Zhang,
Berman, and Verter (2012) assumed that the only attractiveness attribute in their
probabilistic-choice model is the proximity to a facility. The authors used a multinomial
logit (NML) model to estimate the probability that a patient chooses each facility. In
that work, the parameter representing the sensitivity to the attractiveness determinant
is given directly in the case study. Zhang and Atkins (2019) also modeled the patient
choice behavior with an MNL model. In addition to distance (travel time), the authors
considered the influence of waiting time on patients’ choice. The authors estimated the
coefficients in the MNL model using actual patient flow data. Other location analysis
papers that incorporate patient choice with a discrete choice model include Marianov,
Ŕıos, and Icaza (2008); Haase and Müller (2014); Zhang and Atkins (2019).

Most of the above location studies considering patient choice often assume that dis-
tance (or proximity) is a major or the only influencing factor, and a few studies also
consider waiting time as the influencing factor. In this paper, we did not use waiting
time as an influencing factor, because in reality it is difficult for patients to have in-
formation about the waiting time of each hospital in advance. Instead, in our choice
model, we considered the preference of patients for CHs versus DHs, and the effect
of distance to these two types of hospitals on patients, which is less considered by
healthcare facility location studies in the literature. In addition, in most studies that
considered patient behavior or preference, there are no differences on patient types,
whereas we differentiated patients by their insurance types and analyzed their respec-
tive hospital choice behaviors. Furthermore, in contrast to the above studies using
MNL models, which directly predetermined or used patient flow data in hospitals to
fit the values of parameters related to patient choice preference, we fitted an MNL
model against first-hand behavior data collected from a survey of 358 Shanghai resi-
dents. Then, we examined whether distance and type of the hospital were influencing
determinants and estimated the influence of significant factors. We believe this has
made our work more realistic and comprehensive.
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Another aspect of research related to our work concerns incorporating congestion
in facility design models, in which the most common way is to represent each facility
as a queue (e.g., M/M/1 or M/G/1) and consider a constraint on the congestion level.
For example, to incorporate service congestion, several studies considered a constraint
on wait time. Wang, Batta, and Rump (2002); Berman and Drezner (2006); Zhang,
Berman, and Verter (2012) used M/M/1 (or M/M/C) queues to model facilities and
considered the upper bound on the average waiting time of clients (or equivalent queue
length) in a constraint. Marianov and Serra (1998, 2002) modeled service facilities as
M/M/1 (or M/M/C) queueing systems and introduced a constraint to ensure the
probability that a client enters a queue at a facility with at most b waiting clients is
at least α in a maximal covering location-allocation model. Alternatively, there are
studies that establish a decay function between demand and waiting time in con-
straints. Zhang, Berman, and Verter (2009) captured the level of congestion at each
facility with an M/M/1 queue in a preventive health facility location problem. They
assumed the fraction of clients from each population node to each facility is a de-
creasing function of the expected total (travel, waiting and service) time and assumed
clients choose the facility with a minimum total time. The authors then provided a
heuristic solution method to determine the number of facilities and the location of
each facility so as to maximize the population-level participation. Zhang and Atkins
(2019) modeled each medical facility as an M/M/c queue. The authors assumed that
the mean system waiting time and travel time are main determinants for client choice,
and used an MNL model to establish the relationship between the equilibrium flow
from each population node to each facility. Vidyarthi and Kuzgunkaya (2015) used
spatially distributed M/G/1 queues to model a preventive health facility network, and
captured congestion due to waiting and service delays. Then to minimize the weighted
sum of total travel time and waiting and service delays, the authors presented a model
to determine the location of the facilities, the service capacity of each facility, and
the allocation of clients to each facility. Different from the above stuides that assume
every patient arriving at a facility will join the queue, we modeled each hospital as an
M/M/1 queue and considered balking. That is, a patient arriving to a hospital will
decide whether or not to join the queue according to his/her estimated waiting time.

3. Model formulation

The optimization model presented in this section concerns the government’s need to
alleviate the current situation of poor care access among patients. Studies suggest
that the combined time spent on transport and waiting to access care can be used
as a proxy to measuring care accessibility of hospitals (Zhang, Berman, and Verter
2009; Vidyarthi and Kuzgunkaya 2015). The objective is to tradeoff between care
accessibility and government spending for the capacity expansion.

Let JH and JL be the sets of current sites of CHs and DHs, respectively. Let J be
the set of candidate sites for new hospitals, either CHs or DHs. Let I be the set of
residential sites (considered as demand nodes). We also denote three sets of decision
variables:
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xHj =

{
1 if a CH is located at site j, j ∈ J,
0 otherwise.

xLj =

{
1 if a DH is located at site j, j ∈ J,
0 otherwise.

yj =

{
1 if an existing DH at site j is upgraded, j ∈ JL,
0 otherwise.

Thus, the binary vector of decision variables for locating new CHs and DHs is rep-

resented by xH =
(
xH1 , ...x

H
j , ...x

H
|J |

)
and xL =

(
xL1 , ...x

L
j , ...x

L
|J |

)
, respectively. The

decision vector on whether to upgrade a DH is represented by y =
(
y1, ...yj , ...y|JL|

)
.

Based on the questionnaire used for the choice model, the cohort of respondents was
divided into two classes distinguished by insurance types. Without loss of generality,
denote R to be the set of patient classes.

Given decision vector xH , xL and y, one can calculate the rectilinear distance
between residential site i and hospital site j, denoted by dij , identify the binary label,
denoted by qj , of a hospital at site j, i.e., whether the hospital at site j is CH or
DH, and then estimate the likelihood of a class r patient at site i choosing a hospital
at site j, denoted by prij

(
xH ,xL,y

)
, r ∈ R, i ∈ I, j ∈ J ∪ JH ∪ JL, specified by

the underlying choice model. By converting the population quantity of class r at
site i into the demand estimate for outpatient care, which is denoted by dri , and
combining the demand estimate with patient choice preferences prij

(
xH ,xL,y

)
, one

can obtain the arrival rate of class r patients from site i to hospital at site j and
the total arrival rate at a hospital at site j , which are denoted by λrij

(
xH ,xL,y

)
.

Thus, λrij
(
xH ,xL,y

)
= dri p

r
ij

(
xH ,xL,y

)
. One can further denote λj

(
xH ,xL,y

)
to

be the combined arrival rate of the hospital at site j over all residential sites. Thus,
λj
(
xH ,xL,y

)
=
∑
r∈R

∑
i∈I

dri p
r
ij

(
xH ,xL,y

)
).

Given λj
(
xH ,xL,y

)
, one can further derive the mean waiting time and balking

probability at site j, denoted by WH
j

(
λj
(
xH ,xL,y

))
and pBHj

(
λj
(
xH ,xL,y

))
, if the

hospital at site j is CH; or those quantities at site j, denoted by WL
j

(
λj
(
xH ,xL,y

))
and pBLj

(
λj
(
xH ,xL,y

))
, if the hospital at site j is DH.

Next we present the model aiming to selecting optimal sites for new CHs or DHs
and selecting existing DHs to upgrade so as to minimize an objective, which comprises
three components: (i) the cost of weighted mean wait times for service at hospital site
j, i.e., WH

j (λj
(
xH ,xL,y

)
) or WL

j (λj
(
xH ,xL,y

)
); (ii) the cost of traveling to hospital

site j for care from residential site i , i.e., dij
(
xH ,xL,y

)
; and (iii) the spending of the

government for expanding the capacity of the hospital network.
The nonlinear program for the location optimization problem is presented

as in (1) – (5). In the optimization model, for notational simplicity, we use
λij , λj , dij , WH

j , WL
j , pBHj and pBLj to present λij

(
xH ,xL,y

)
, λj

(
xH ,xL,y

)
,

dij(x
H ,xL,y), WH

j

(
λj
(
xH ,xL,y

))
, WL

j

(
λj
(
xH ,xL,y

))
, pBHj

(
λj
(
xH ,xL,y

))
and
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pBLj
(
λj
(
xH ,xL,y

))
, respectively.

min
xH ,xL,y

αd

[
CdH

(∑
i∈I

∑
j∈J

xHj · λij · dij +
∑
i∈I

∑
j∈JL

yj · λij · dij +
∑
i∈I

∑
j;′∈JH

λij · dij

)
+

CdL

(∑
i∈I

∑
j∈J

xLj · λij · dij +
∑
i∈I

∑
j∈JL

(1− yj) · λij · dij

)]
+

αW

[
CWH

(∑
j∈J

xHj · λj ·WH
j +

∑
j∈JL

yj · λj ·WH
j +

∑
j∈JH

λj ·WH
j

)
+

CWL

(∑
j∈J

xLj · λj ·WL
j +

∑
j∈JL

(1− yj) · λj ·WL
j

)]
+

αI

[∑
j∈J

(
κHx · xHj + κLx · xLj

)
+
∑
j∈JL

κHy · yj

]
(1)

s.t. xHj + xLj ≤ 1, ∀j (2)

pBHj ≤ θH , ∀j (3)

pBLj ≤ θL,∀j (4)

xHj , x
L
j , yj ∈ {0, 1} ,∀j (5)

Objective (1) comprises three components: (i) the cost of traveling; (ii) the cost
of waiting; and (iii) the government spending. In (1), CdH and CdL is an unit cost of
traveling to CH and DH; respectively; CWH

and CWL
is the unit-time cost of waiting at

CH and DH, respectively; κHx , κLx is the costs of land acquisition and facility building
for establishing a CH and a DH, respectively, κy is the cost of upgrading a DH; weights
αd, αW and αI are assigned to the cost of traveling, cost of waiting, and government
spending, respectively. Constraints (2) state that a DH cannot be built when a CH
has been built at some site, and vice versa. Constraints (3) and (4) are constraints
that ensure the balking probability of patients at CH and DH is capped by some level,
denoted by θH and θL, respectively. Constraints (5) ensure non-negativity and binary
restrictions.

The queueing model and the choice models embedded in the above location opti-
mization model are highly nonlinear, which makes the optimizaton model difficult to
solve exactly. Thus, we elect to use a Genetic Algorithm to solving the above program;
see Appendix B for detailed information.

3.1. The probabilistic-choice model of patient hospital visit behavior

As described in the literature review, it is common to consider distance as an influential
factor, such as Mitropoulos et al. (2006); Zhang, Berman, and Verter (2009). Studies
have shown that the reduction in attractiveness with distance, which is called distance
decay, is a key determinant of the use of any health facility ((McGuirk and Porell
1984; Farhan and Murray 2006)). Similarly, Mitropoulos et al. (2006) compared the
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influence of the distance decay on general hospitals and local health centers. Victoor
et al. (2012); Schnatz et al. (2007) examined the influence of provider expertise (or
them being knowledgeable, experienced, and capable) is an important determinant of
patient’s provider choice. Wei (2014); Wei, Yao, and He (2018); Kang (2016) examined
the influence of specialists on patient’s hospital choice.

To investigate how patient choice is affected by the distance and the type of hospitals
(i.e., CH or DH), we designed a questionnaire, recruited and surveyed a cohort of online
respondents residing in Shanghai (see Appendix A for the web-based questionnaire).
With the questionnaire, we acquired each respondent’s insurance type first, and then
asked him/her to make a choice among a choice set of hospital alternatives. In this
choice set for each respondent, each hospital alternative is identified by a randomly
generated pair of attributes (dij , qj), where dij is the distance between residential site i
and hospital site j and qj is the indicator of hospital type (i.e., CH or DH) at location
j. We consider attribute dij to be a continuous variable and qj to be an indicator
variable for two hospital types, a 1 if the hospital at site j is a CH, 0 otherwise.
After completing the survey, we used an MNL model to test whether the distance and
hospital type would play an important role on the hospital choice behavior, and how
significant the effect would be. The utility that a respondent chooses a hospital at
site j with a distance dij and a type identifier qj , is given by Unij = V n

ij + εnij , i ∈ I,
j ∈ J ∪ JH ∪ JL. In this expression, V n

ij is the deterministic component and εnij is a
random error component following a Gumbel distribution. Further for a hospital at
site j with a distance dij and a hospital type qj , we have V n

ij = βtd
n
ij + βqq

n
j , where βd

and βq are parameters that capture the preference of a patient at site i on distance
and hospital type. These two parameters need to be estimated.

The probability that a patient n at site i chooses a hospital at site j with distance
dnij and hospital type qnj is given by:

pnij =
exp(βdd

n
ij + βqq

n
j )∑

k∈J∪JH∪JL
exp(βdd

n
ik + βqqnk )

, i ∈ I, j ∈ J ∪ JH ∪ JL (6)

Note that the preference parameters for distance and hospital type of class r patients
are denoted by βrd and βrq , respectively. Therefore the probability a class r patient at
site i chooses a hospital at site j is expressed as

prij =
exp(βrddij + βrqqj)∑

k∈J∪JH∪JL
exp(βrddik + βrqqk)

, r ∈ R, i ∈ I, j ∈ J ∪ JH ∪ JL. (7)

With the above definition of the choice probability in equation (7), we can derive the
arrival rate of class r patients from site i to hospital at site j as

λrij
(
xH ,xL,y

)
=



dri

(
xHj + xLj

)
exp(βrddij + βrqx

H
j )

U r
, r ∈ R, i ∈ I, j ∈ J (8)

dri
exp(βrddij + βrq )

U r
, r ∈ R, i ∈ I, j ∈ JH (9)

dri
exp(βrddij + βrqyj)

U r
, r ∈ R, i ∈ I, j ∈ JL (10)
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where

U r =
∑
k∈J

(
xHk + xLk

)
exp(βrdtik + βrqx

H
j ) +

∑
m∈JH

exp(βrt tim + βrq ) +
∑
l∈JL

exp(βrdtil + βrqyl).

Equation (8) represents the arrival rate of class r patients from residential site i ∈ I
to a new hospital at site j. Notice that when the newly built hospital at candidate
site j is CH (i.e., xHj = 1, xLj = 0, j ∈ J), its hospital type is set to 1 in eqaution (8)

(i.e., qj = xHj = 1, j ∈ J); otherwise, when the newly built hospital at site j ∈ J (i.e.,

xHj = 0, xLj = 1, j ∈ J) or there is no hospital built at site j ∈ J (i.e., xHj = 0, xLj = 0,

j ∈ J), the corresponding hospital type is 0 (i.e., qj = xHj = 0, j ∈ J). Equation (9)
represents the arrival rate of class r patients from site i ∈ I to the existing CH at site
j ∈ JH . Accordingly, the hospital type of an existing CH at site j ∈ JH is set to 1 (i.e.,
qj = 1, j ∈ JH). Similarly, equation (10) represents the arrival rate of class r patients
from site i to the existing DH at site j ∈ JL. When the existing DH at site j ∈ JL is
upgraded to a CH (i.e., y = 1, j ∈ JL), its hospital type is also upgraded to 1 (i.e.,
qj = yj = 1, j ∈ JL), otherwise, when the existing DH at site j ∈ JL is not upgraded
to a CH (i.e., yj = 0, j ∈ JL), its hospital type is 0 (i.e., qj = yj = 0, j ∈ JL).

Then the arrival rate at a hospital at site j is expressed as λj (x,y) =∑
r∈R

∑
i∈I

λrij (x,y), for any j ∈ J ∪ JH ∪ JL. With the above arrival rates, we next

use them as input to the multi-hospital system model.

3.2. Performance evaluation for the multi-hospital system

We assume the arrival process from resident site i to hospital site j follows a Poisson
distribution with mean arrival rate λij

(
xH ,xL,y

)
. Thus the total arrival process at

hopsital site j also follows a Poisson distribution with mean arrival rate λj
(
xH ,xL,y

)
.

In reality, once a patient arrives at a hospital, too long a queue discourages him or
her from joining the queue (i.e., balking). We thus consider impatience and balking
of patients in the system. We first define a virtual queueing time (vqt) as introduced
in Liu and Kulkarni (2008). The vqt is the waiting time estimated by a patient once
s/he arrives at the hopital. We assume that each patient can estimate the time s/he
will wait from multiple sources. For example, in many countries, such as Australia,
the estimated waiting time is sometimes available to patients (Guo et al. 2017), or
patients may estimate the waiting time based on their previous visits (Zhang and
Atkins 2019). Next we introduce the balking rule used in our system performance
analysis. We assume when an arriving patient evaluates that his/her vqt is no more
than a fixed amount, s/he decides to join the queue. The fixed amount is termed
the threshold of tolerable waiting time, and denoted by bH for CH and bL for DH,
respectively. We thus define the probability that vqt is more than the fixed amount bH
and bL as the balking probability. In addition, we represent ĴH as the the set where CHs

are located (i.e.,ĴH = JH ∪
{
j
∣∣∣xHj = 1, j ∈ J

}
∪{j |yj = 1, j ∈ JL }), and represent ĴL

as the set where DHs are located (i.e.,ĴL =
{
j
∣∣∣xHj = 0, j ∈ J

}
∪ {j |yj = 0, j ∈ JL }).

We thus represent balking probability at CH j ∈ ĴH and DH j ∈ ĴL as pBHj , j ∈ ĴH
and pBLj , j ∈ ĴL, respectively.

Next we assume the service duration at each CH and at each DH is exponentially
distributed. We denote the mean service rates of each CH j ∈ ĴH and each DH j ∈ ĴL
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to be µHj and µLj , respectively. For an CH j ∈ ĴH , an arriving patient leaves the two-

level system with balking probability pBHj , j ∈ ĴH , or wait for service in an infinite

capacity FCFS (first come, first served) queue with probability 1− pBHj , j ∈ ĴH , then

leave when the service is completed. For an LWH j ∈ ĴL, a patient will leave the system
with balking probability pBLj , j ∈ ĴL at his or her arrival epoch, or wait for service

in a queue with probability 1− pBLj , j ∈ ĴL. With these assumptions, we formulate a

two-level queueing network with each hospital being an M/M/1 queue with balking.
Given λj

(
xH ,xL,y

)
, j ∈ J∪JH∪JL, which can be obtained from equations (8)-(10),

µHj , µLj , bH and bL, we can derive closed-form expressions for the relevant queueing
performance measures according to Theorems 1 to 4 in Liu and Kulkarni (2008), i.e.,
CH/DH utilization rate, balking probability, and mean waiting time.

• The HWH utilization rate at a CH j ∈ ĴH : ρHj (λj
(
xH ,xL,y

)
)=λj(xH ,xL,y)

µH
;

• The LWH utilization rate at a DH j ∈ ĴL: ρLj (λj
(
xH ,xL,y

)
)=λj(xH ,xL,y)

µL
;

• The balking probability at an CH j ∈ ĴH :

pBHj
(
λj
(
xH ,xL,y

))
= ωHj

µHj p
H
j

1−pHj
e
−(µHj −λj(xH,xL,y))bH

µHj
, j ∈ ĴH ;

where

ωHj =


[
µHj p

H
j

1−pHj

(
1

µHj −λj(x,y)
− e

−(µHj −λj(xH,xL,y))bHλj(xH ,xL,y)
(µHj −λj(xH ,xL,y))µHj

)
+ 1

]−1
ifρHj 6= 1,

λj(xH ,xL,y)

λj(xH ,xL,y)+
µH
j
pH
j

1−pH
j

(1+λj(xH ,xL,y)bH)
ifρHj = 1,

and pHj = λj(xH ,xL,y)
λj(xH ,xL,y)+µHj

;

• The balking probability at a DH j ∈ ĴL:

pBLj
(
λj
(
xH ,xL,y

))
= ωLj

µLj p
L
j

1−pLj
e
−(µLj −λj(xH,xL,y))bL

µLj
, j ∈ ĴL;

where

ωLj =


[
µLj p

L
j

1−pLj

(
1

µLj −λj(xH ,xL,y)
− e

−(µLj −λj(xH,xL,y))bLλj(xH ,xL,y)
(µLj −λj(xH ,xL,y))µLj

)
+ 1

]−1
ifρLj 6= 1,

λj(xH ,xL,y)

λj(xH ,xL,y)+
µH
j
pL
j

1−pL
j

(1+λj(xH ,xL,y)bL)
ifρLj = 1,

and pLj = λj(xH ,xL,y)
λj(xH ,xL,y)+µLj

;

• The mean waiting time at a CH i:
WH
j

(
λj
(
xH ,xL,y

))
=

ωHj µ
H
j p

H
j

[
1−(µHj −λj(xH ,xL,y))bH ·e

−(µHj −λj(xH,xL,y))bH−e−(µ
H
j −λj(x

H,xL,y))bH
]

(1−pBHj )(1−pHj )(µHj −λj(xH ,xL,y))
2 ifρHj 6= 1

ωHj b
2
H

2(1−pBHj )
µHj p

H
j

1−pHj
ifρHj = 1

• The mean waiting time at a DH j:
WL
j

(
λj
(
xH ,xL,y

))
=

ωLj µ
L
j p

L
j

[
1−(µLj −λj(xH ,xL,y))bL·e

−(µLj −λj(xH,xL,y))bL−e−(µ
L
j −λj(x

H,xL,y))bL
]

(1−pBLj )(1−pLj )(µLj −λj(xH ,xL,y))
2 ifρLj 6= 1

ωLj b
2
L

2(1−pBLj )
µLj p

L
j

1−pLj
ifρLj = 1
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4. Case study

In this section, we use the multi-hospital system in Shanghai as the real-world context
to present a case study. We used this case study to answer the following three types
of questions: (1) where new hospitals of either type should be built and what existing
DHs should be upgraded; (2) what happens to the design of the hospital system if
the distribution of patients of the two insurance types changes; and (3) what happens
to the design of the hospital system if the threshold of patient’s tolerable waiting
time changes. Through this real-world based case study, our study is expected to offer
system redesign recommendations to the Shanghai municipal government.

4.1. Background

In Shanghai, there are 16 administrative divisions including 230 sub-districts (avail-
able from http://www.shanghai.gov.cn/), which can be divided according to central
urban area, semi-central semi-suburban area, and suburban area; see Table 7 and Fig-
ure 1. Table 7 represents the division of administrative districts in Shanghai and the
corresponding proportion of each subpopulation. In our model, the 230 sub-districts
in Shanghai represent the spatial distribution of population zones and are also used to
represent the candidate sites for new hospitals. The considered system comprises 285
existing hospitals, 39 of which are CHs, 246 are DHs. Please see Figure 2–3. Tabula-
tion on the 2010 Population Census of the People’s Republic of China by Township
(available from www.stats.gov.cn/) provides the population quantity of permanent
residents in each of the 230 sub-districticts in Shanghai; see Table 8 and Figure 1.
Figure 2 shows that most of the CHs are located in central urban areas, where the
population is though only 30.35% of the total population of Shanghai.

The two-week consultation rate for outpatient services is reported to be different
between the two types of basic medical insurance in Shanghia (Qiu 2012), namely
urban employee basic medical insurance and urban and rural resident basic medical
insurance. For the interest of space, we refer to the two types as UE insurance and URR
insurance. The two-week consultation rate of residents with UE and URR insurance
in one district of Shanghai is 11.73% and 9.89% (Qiu 2012). Further, according to the
Shanghai Statistics Year Book (available from www.tjj.sh.gov.cn/), the proportion
of residents covered by UE and URR insurance is 74.5% and 25.5%, respectively. By
assuming five working days per week and 8 working hours per day, we thus converted
the population quantity with the two insurance types into the demand for outpatient
care per hour, to calcuate the mean arrival rates. Finally, based on real data of patient
service time in representative CHs (i.e., Ruijin hospital and Shanghai No. 6 People
Hospital) and DHs (i.e., Xujiahui Street Community Health Service Center, Longhua
Street Community Health Service Center, and Hongmei Street Community Health
Service Center) between 2015–17, we were able to estimate the mean service rates at
CHs and DHs, i.e., µHj = 600 patients/h and µLj = 20 patients/h.

4.2. Choice model

To characterize how patient hospital visit behaviors are influenced by the hospital type
and distance to hospital, we designed a questionnaire (see Appendix A). We ran an
online survey with the quaestionnaire in October 2019 on www.wenjuan.com, a Chinese
internet survey platform. A total of 362 respondents in Shanghai participated in our
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Figure 1.: The spatial distribution of population zones

study, and 358 of which were deemed valid samples. The respondents are anonymous
and the data source is reliable.

In the questionnaire, we presented a scenario. We asked each of the respondents
to imagine the situation s/he experienced a fever and cough, accompanied by chest
tightness, shortness of breath and other symptoms, which is likely to be a respiratory
disease. As a result, s/he would visit some outpatient department. We then provided
them with a choice card containing two hospitals identified by distance and type. The
two pairs of hospital attributes were randomly generated. We set a plausible range of
distance on each hospital type from which we drew uniform samples as follows. The
lower bound of the distance range on DH is 0 and the upper bound is 3. The lower
bound of the distance range on CH is 1 and the upper bound is 30.

With the behavior experiment data, we parameterized a choice model for either
insurance type. Table 1 presents our choice model results, i.e., respective estimates of
parameters βd and βq from equation (6). We verified that for both insurance types, the
attribute hospital type is significant and positively correlated to the hospital choice,
implying when the distance to hospital being equal, patients prefer CH as opposed
to DH. Our results also verified that for both insurance types, the attribute distance
to hospital is a factor as significant as hospital type. That is, the results imply when
the hospital type being equal, the shorter the distance, the more likely the patient is
to visit it. In addition, by comparing the probabilities of choosing CH between the
two types of patients (please see Appendix C), we found that when the differences
between traveling to the DH and traveling to the CH are the same for the two types
of patients, UE patients are more likely to choose to visit the CH than URR patients.
In summary, with the choice experiment, we parameterized the two key factors on
patient’s hospital visit behavior in Shanghai, which paved the way for us to study the
multi-hospital system redesign problem of Shanghai.
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Figure 2.: Current location of CHs Figure 3.: Current location of DHs

Table 1.: Choice model coefficient estimation results

Insurance Variable Parameter Standard ppp –Value

Type Name Estimate Error

UE

Type CH 1.087 0.258 0.000

Distance -0.085 0.015 0.000

Constant 0.148 0.121 0.221

URR

Type CH 1.027 0.494 0.038

Distance -0.093 0.031 0.003

Constant -0.150 0.260 0.563

4.3. Results

In this section, we report three Shanghai-based case studies. The three research ques-
tions at the beginning of Section 4 have been presented. Our main results are location
of new CHs and DHs, and the decision about whether or not to upgrade a DH. These
studies involve solving the multi-hospital system redesign optimization model, i.e., Eq.
(1)–(5). We set CdH , CdL , CWH

, and CWL
, the unit-cost of distance to CH and DH and

the unit-time cost of waiting time at CH and DH, to be 2, 1.8, 12, 8, respectively. Then
we set αd, the weighting coefficient of distance, to be 0.4, and set αW , the weighting
coefficient of waiting times to be 0.45, and set αI , the weighting coefficient of govern-
ment investment, to be 0.15. The upper bounds of balking probability of patients at
CH and DH, i.e., θH and θL, are set to be 0.2 and 0.3, respectively. κHx , κLx , the cost
of land acquisition and establishment of a CH and a DH, is set to be 9000 and 2000,
respectively, and the cost of upgrading a DH, i.e., κy, is set to be 6000; We estimated
the service rates of an CH and an DH to be µHj = 600, µLj = 20, respectively, based
on the average number of patients a CH and a DH treats hourly. By conducting field
investigation at various hospitals, we specified the threshold on the wait time tolerance
at CHs to be bH = 2 hour, and the threshold at DHs to be bL = 1 hour.
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Study 1: What is the optimal hospital system design to achieve the best system
performance?

Figure 4 displays the optimal location of CHs, including 1 new built and 18 upgraded.
CHs in the current system are mainly clustered in the central urban areas (see Fig-
ure 2). In contrary, the location of CHs in the optimal design is more dispearsed. In
particular, we found one new CH would be built at the center of Chongming island
(majority of Chongming District), which is far from the central urban area. In addi-
tion, most of upgraded hospitals (i.e., DHs upgraded to CHs) would be distributed in
suburban areas that previously had no CHs. Taking a closer look at the optimal facility
location, we noticed that the suburban area with the most upgraded CHs is Songjiang
District, which is located almost at the center of eight Shanghai suburban areas. This
result is intuitive that centrally located hospitals would be conveniently accessible to
surrounding residents that are still oriented towards the distance to hospital when
choosing which hospital to visit.

Figure 5 displays the optimal location of DHs. The optimal location suggests that
DHs be upgraded in suburbs relatively close to central city and new DHs be built at
more remote suburbs. This result implies that the hospital network redesign is aligned
with the expansion and dispersion of residential areas to traditionally remote sites.

To evaluate the performance of the optimal hospital system design, we compared
the total costs (i.e., weighted sum of the waiting cost, traveling cost, and government
spending). The results show a 41.4% reduction in the total cost under the optimal
hospital system design (i.e., 3.43× 105 under the optimal design vs. 5.86× 105 under
the current system). Further, the results in Table 2 suggest that under the optimal
design, the mean waiting times at CHs and DHs are decreased, and the distances to
CHs and DHs are decreased as well. These results imply that adding CHs (mostly from
upgrading existing DHs) in suburban areas can economically reduce the wait time at
CHs, and to some extent, reduce the travel distance.

Table 2.: The weighted1 average wait time and distance

Mean waiting time (in hours) Mean distance (in km)
at CH at DH to CH to DH

Current 1.86 0.29 17.0 1.8
Optimal 0.02 0.19 15.4 1.6
1 The weight of each CH/DH is calculated as the arrival at each CH/DH divided by the
total arrival at all CHs/DHs.

Study 2: What is the optimal hospital system design with the different distribution of
residents covered by two insurance types?

In this study, we analyzed the would-be impact on the network design if the distri-
bution of patients covered by the two types of insurance changed. This study was
inspired by the burden on healthcare capacity management due to rapid urbanization
in China. As a result, the proportion of UE patients would increase. In this study, we
thus increased its percentage from 74.5% to 95% (see Table 3). We kept other model
parameters the same as in Study 1.

Figure 6 displays the optimal location of 19 CHs, including 1 new built and 18
upgraded. Compared with the optimal system design obtained from Study 1, the
number of newly built DHs is less when the resident population consists of more UE
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Figure 4.: Optimal location of CHs in
Study 1

Figure 5.: Optimal location of DHs in
Study 1

Table 3.: Percentage of patients covered by UE and URR

Current Alternative
Insurance type UE URR UE URR

Proportion 74.5% 25.5% 95% 5%

patients. This can be explained as follows. UE patients prefer to go to CH compared
with URR patients. Thus with increased percentage of UE patients, the service demand
for CH would increase and the demand for DH would decrease, which results in fewer
DHs to be built. On the other hand, the percentage of UE patients increase does not
change the trend of having most of upgraded hospitals in the suburban areas that had
no CHs previously. Taking a closer look at the facility location, we found a DH would
be upgraded on either side of the Chongming Island (majority of Chongming District),
and a new CH would be built in Fengxian District. We noticed that the suburban area
with the most upgrades is still Songjiang District, the same as in Study 1. Figure 7
displays the optimal location of newly built DHs, upgraded DHs, and remaining DHs.
Similar to Study 1, the optimal location of DHs shows that most of the new DHs are
built at more remote suburbs of the city.

To evaluate the performance the optimal hospital system design, we again compared
the total costs. The results show a 40.9% reduction in the total cost under the optimal
design (i.e., 3.47×105 under the optimal design vs. 5.86×105 under the current system).
Further, the results in Table 4 show that under the optimal design, the mean waiting
time at CH and DH are decreased, and the distances to CH and DH are decreased
as well. Similar to Study 1, these results imply that adding CHs (mostly from DH
upgrades) in suburban areas can economoically improve patients’ care accessibility.
Comparing the two studies, we found in this study the distances to CHs and DHs are
slighly higher; the mean waiting time at CHs is increased but that at DHs is decreased.
These results further confirm that when the proportion of UE patients increases, the
demand for CHs increases accordingly, which also results in a slight increase in the
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Figure 6.: Optimal location of CHs in
Study 2

Figure 7.: Optimal location of DHs in
Study 2

total cost.

Table 4.: The weighted average wait time and distance in Study 2

Mean waiting time (in hours) Mean distance(in KM)
at CH at DH to CH to DH

The current 1.9 0.29 17.0 1.75
Study 1 0.02 0.19 15.4 1.56
Study 2 0.03 0.17 15.6 1.63

Study 3: What is the optimal hospital system design if the threshold of patient’s
tolerable waiting time varies?

In this study, we analyzed the impact on the optimal hospital system design when
the threshold of patient’s tolerable waiting time decreases. We varied the threshold
of patient’s tolerable waiting time at CH and DH, as shown in Table 5. The baseline
column provides the thresholds in Study 1. We kept other model parameters the same
as in Study 1.

Table 5.: The threshold of patient’s tolerable waiting time (in hours)

Baseline Alternative
Hospital type CH DH CH DH

Threshold 2 1 0.5 0.1

Figure 8 displays the optimal location of 21 upgraded CHs. Similar to the previous
studies, the results suggest most hospital upgraded would appear in suburban areas
that had no CHs previously. The suburban area with the highest number of upgrades
would still be at the center of suburban areas, i.e., Songjiang District. Taking a closer
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Figure 8.: Optimal location of CHs in
Study 3

Figure 9.: Optimal location of DHs in
Study 3

look at, we found that two upgrades would appear on Chongming Island. Figure 9
displays the optimal location of DHs. We again found that most of the DHs would
be located at suburban areas. Compared with the baseline optimal design (i.e., from
Study 1), we found the number of CHs would increase as the waiting-time tolerance
thresholds decrease. This can be explained as follows. With decrease of the thresholds,
more CHs would be needed to reduce patient waiting time, to ensure the balking
probability to be below a certain level.

To evaluate the performance the optimal hospital system design, we again compared
the total costs. The results show a 41.4% reduction in the total cost (i.e., 3.44 × 105

under the optimal design vs. 5.86×105 under the current system). Further, the results
in Table 6 show that under the optimal design, the mean waiting times and distances
are decreased, and the distances to CH and DH are decreased. Comparing the results
here and those from Study 1, we found the distances are further increased slightly; the
waiting times are further decreased slightly; and a minimal increase in the total cost.

Table 6.: The weighted average wait time and distance in Study 3

Mean waiting time (in hours) Mean distance (in KM)
at CH at DH to CH to DH

Current 1.86 0.29 17.0 1.75
Study 1 0.022 0.189 15.44 1.56
Study 3 0.020 0.019 15.45 1.66

5. Conclusions and Future Research

Capacity expansion and spatial redistribution is often needed in healthcare to coor-
dinate with population changes and differences on care-seeking behavior. A well re-
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designed hospital system is expected to improve care access for the entire population
without incurring significant spending on establishing new hospitals and upgrading
the ones in existence.

In this paper, we studied the problem of optimally reconfiguring a two-tier hospital
system consisting of central hospitals and district hospitals, which was inspired by
real challenges in Chinese metropolitan areas. Our study includes: (1) developing a
multinomial logit choice model to characterize hospital visit behaviors of different
patient groups; (2) developing a multi-server queuing network model with the arrival
rates specified by the choice model; (3) analyzing the performance measures of the
queueing network model with consideration of patient balking; (4) solving a discrete
location optimization problem for the hospital system redesign. Our study makes two
contributions: (1) integration of choice models of multiple customer types into multi-
type facility network redesign optimization with queuing performance measures in the
objective; (2) real-world case studies for Shanghai, a place of imminent need, with
anticipation that we will make direct impact to healthcare service operations there.

The key findings of the patient hospital choice modeling are (1) hospital type (cen-
tral vs. district) and distance to hospital are influential factors in patient hospital
choice behavior; (2) patients with urban employment insurance type are more likely
to choose a central hospital than patients with urban rural resident insurance, when
other conditions being equal. Our case study recommends hospital system reconfigu-
ration in Shanghai in line with expansion and dispersion of residential areas in remote
sites of Shanghai. Our case study also suggests to build fewer district hospitals with
more patients of urban employment insurance type, and build more central hospitals
when patients become less patient in waiting.

We plan to pursue further research in the following directions. First, we will intro-
duce additional heterogeneity among hospitals such as differentiated pricing in medical
services, and further set the multi-service pricing decision in a model extension. Second,
we will incorporate individual-specific attributes (such as age) in the choice modeling.
Finally, we will consider the effects of demographic changes (e.g., population aging)
on the hospital system reconfiguration.
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capture when users rank facilities by shorter travel and waiting times.” European Journal
of Operational Research 191 (1): 32–44.

Marianov, Vladimir, and Daniel Serra. 1998. “Probabilistic, maximal covering loca-
tion—allocation models forcongested systems.” Journal of Regional Science 38 (3): 401–424.

Marianov, Vladimir, and Daniel Serra. 2002. “Location–allocation of multiple-server service
centers with constrained queues or waiting times.” Annals of Operations Research 111 (1-4):
35–50.

McGuirk, Marjorie A, and Frank W Porell. 1984. “Spatial patterns of hospital utilization: the
impact of distance and time.” Inquiry 84–95.

Mestre, Ana Maria, Mónica Duarte Oliveira, and Ana Paula Barbosa-Póvoa. 2015. “Location–
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Appendices

Appendix A. The hospital visit choice behavior questionnaire
In this appendix, we present the questionnaire we used to survey a cohort of online

respondents and model the hospital visit choice behavior in Shanghai. The question-
naire is orignally written in Chinese. We provide its English translation here.
Introduction

You are being invited to take part in a research study about hospital visit choices.
Please note that there are no right or wrong answers to any questions in this ques-
tionnaire. We are only interested in your opinions and feedback. Your kind and valid
response will help the Shanghai municipal government develop better hospital network
and will help make you feel more satisfied about the accessibility of hospitals in the
future. This questionnaire should take approximately 3-5 minutes to complete.

We assure you that the responses you provide will not be linked to any personal
identifiable information. Your participation in this study is on a voluntary basis and
you are free to withdraw from the study at any time without penalty. We thank you
again for your willingness to participate in this study. Please feel free to contact us if
you need any additional information about this project.
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Section 1: Basic information
The first section of the questionnaire includes questions about your demographics

and other related information. We will only use your responses to these questions to
compare across survey participants. We assure you that your privacy is protected.

1) What is your gender?
Femalea) Maleb)

2) Which of the following categories does your age falls into?
0-18a) 19-34b) 35-44c) 60-69d) over 70e)

3) What is the highest level of education you have obtained?
Primary school or belowa) Junior high schoolb)

High school or vocational schoolc) Junior colleged)

Bachelor degree or abovee)

4) What’s your occupation?
Unemployeda) Studentb)

Employees of state-owned enter-
prises and institutions

c) Self-employed or private ownersd)

Employees of private or foreign
companies

e) Peasantf)

Workerg) Retiredh)

Other (Please specify)i)

5) Which of the following income groups includes your monthly individual income
less than 3000 RMBa) 3000-5000 RMBb)

5000-10000 RMBc) 10000-30000 RMBd)

over 30000 RMBe)

Section 2: Choice scenario
In the following, we will present a scenario where we would like you to choose

whether to go to a central hospital or a community-based hospital. Please note that
there are no correct or incorrect responses, and your choice should be based on your
own preferences, experiences, and specific needs.

Suppose you had fever and cough with headache, muscle pain and other symptoms,
you would go to a hospital in need of basic medical service, e.g., an outpatient consul-
tation. Imagine you have two options, either going to a central hospital, i.e., a CH, or
a community-based hospital, i.e., a DH.

Alternatives

Hospital 1 Hospital 2

Type Central hospital Community-based hospital

Distance X1 X2

Which one would you choose?

Appendix B. Location algorithm
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In Genetic Algorithm, each chromosome represents a solution. The quality of a
solution is represented by a fitness value. In this paper, the integer coding is used
to represent a chromosome. Each chromosome contains a number of genes and each
gene corresponds to a member in J ∪ JL. The actual implementation of the Genetic
Algorithm is presented in the following.

Algorithm 1 Genetic Algorithm

Step 0 (Initialization): Randomly generate Spop feasible solutions. Assure that they
are all different. For each chromosome in the population, its fitness value is set to
the objective function value.
Step 1 (Selection): Sort the chromosomes according to their fitness values. The first
N solutions are used as chromosomes in the initila generation.
Step 2 (Generation of new chromosomes): Follow these steps until the descendant
population has N chromosomes.

Step 2.1 (Parent selection): Two different chromosomes are randomly selected
as parents. For each chromosome, the chance of being selected is equal.

Step 2.2 (Inherit): Copy the gene of the parents to two children. With different
probability, they will be treated in one of the following three ways:

Treatment 1 (Crossover): For each pair of chromosomes, randomly select
one part on the chromosome of one child, and exchange this part with the corre-
sponding part of the other child.

Treatment 2 (Self Crossover): For each child, randomly select two genes on
its chromosome and interchange their values.

Treatment 3 (Mutation): Choose one gene on a chromosome. For each child,
randomly re-generate a new gene to replace the old one.

Step 2.3 (Activity): Examine the feasibility of the two children. If feasible,
take them into the descendant population.
Step 3 (Replacement): Add the old population to the descendant population. Sort
the chromosomes according to their fitness values. The first N chromosomes are
used as the new chromosomes for the next generation.
Step 4 (Stopping criterion): If the running limit reaches a predefined limit, then
stop. Otherwise go to Step 2.

Appendix C. Explanations about the conclusions on Section 4.2
Without loss of generality, we assume that there are a CH and a DH, and patients

choose one hospital according to their preference modeled by equation (7). Based on
the coefficient estimation results in Table 1, the probabilities of choosing the CH for
the two types of patients are given by:

pUE
C =

exp(−0.085 ∗ dUE
C + 1.087 ∗ qC + 0.148)

exp(−0.085 ∗ dUE
C + 1.087 ∗ qC + 0.148) + exp(−0.085 ∗ dUED + 1.087 ∗ qD + 0.148)

=
1

1 + exp(−0.085 ∗ (dUE
D − dUE

C ) + 1.087 ∗ (qD − qC))
;
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pURR
C =

exp(−0.093 ∗ dURR
C + 1.027 ∗ qC − 0.150)

exp(−0.093 ∗ dURR
C + 1.027 ∗ qC − 0.150) + exp(−0.093 ∗ dURRD + 1.027 ∗ qD − 0.150)

=
1

1 + exp(−0.093 ∗ (dURR
D − dURR

C ) + 1.027 ∗ (qD − qC))
.

Note that qC (qD) represents the indicator variable for the CH (DH), and qC = 1,
qD = 0. dUE

C (dUE
D ) is the distance for a UE patient to travel from his/her residential

site to a CH (DH), and dURR
C (dURR

D ) is the distance for a URR patient to travel. The
probability of choosing the CH can thus be further derived as:

pUE
C =

1

1 + exp(−0.085 ∗ (dUE
D − dUE

C )− 1.087)
;

pURR
C =

1

1 + exp(−0.093 ∗ (dURR
D − dURR

C )− 1.027)
.

When the differences between traveling to the DH and traveling to the CH are the
same for the two types of patients (i.e., dUE

D − dUE
C = dURR

D − dURR
C = ∆d), we have

−0.085 ∗∆d− 1.087− (−0.093 ∗∆d− 1.027) = 0.008 ∗∆d− 0.06. As we described in
Section 4.2, the distance of traveling to the DH is no more than 3km (i.e., dUE

D < 3,
and dURR

C < 3), thus ∆d < 3 and 0.008∗∆d−0.06 < −0.036 < 0. Therefore, when the
differences of the travel distances are the same for the two types, we have pUE

C > pURR
C ,

which means that UE patients are more willing to choose a CH than URR patients.

Appendix D. Additional information on the district and sub-district of
Shanghai
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Table 7.: Division of Shanghai and the corresponding proportion of population

Type
Administrative

divisions
Percentage of population
each district each type

Central urban area

HPD (Huangpu) 2.95%

30.35%

JAD (Jingan) 4.68%
XHD (Xuhui) 4.71%

CND (Changning) 3.00%
YPD (Yangpu) 5.70%

HKD (Hongkou) 3.70%
PTD (Putuo) 5.60%

Semi central area
and semi suburban area

PDD (Pudong) 21.91% 21.91%

Suburban area

BSD (Baoshan) 8.28%

47.74%

JDD (Jiading) 6.39%
MHD (Minhang) 10.55%
SJD (Songjiang) 6.87%
QPD (Qingpu) 4.70%

FXD (Fengxian) 4.71%
JSD (Jinshan) 3.18%

CMD (Chongming) 3.06%
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Table 8.: Population quantity of each sub-district in Shanghai

HPD1 HPD2 HPD3 HPD4 HPD5 HPD6 LWD1 LWD2 LWD3 LWD4

66285 64896 89776 74994 61042 72898 82403 59085 57931 49360

XHD1 XHD2 XHD3 XHD4 XHD5 XHD6 XHD7 XHD8 XHD9 XHD10

60533 36281 69710 112400 118872 97171 34877 100444 92915 108582

XHD11 XHD12 XHD13 XHD14 CND1 CND2 CND3 CND4 CND5 CND6

85769 97917 67415 2244 72730 51883 73230 56628 73757 84664

CND7 CND8 CND9 CND10 JAD1 JAD2 JAD3 JAD4 JAD5 PTD1

59551 24487 46865 146776 75272 34288 36544 29173 71511 98267

PTD2 PTD3 PTD4 PTD5 PTD6 PTD7 PTD8 PTD9 ZBD1 ZBD2

120920 128647 112498 120217 111185 172397 229925 194825 34749 77968

ZBD3 ZBD4 ZBD5 ZBD6 ZBD7 ZBD8 ZBD9 HKD1 HKD2 HKD3

80726 97630 77710 156276 78079 74633 152725 73328 102564 122669

HKD4 HKD5 HKD6 HKD7 HKD8 YPD1 YPD2 YPD3 YPD4 YPD5

125634 98094 87401 113751 129035 100480 85870 95382 92505 105613

YPD6 YPD7 YPD8 YPD9 YPD10 YPD11 YPD12 MHD1 MHD2 MHD3

70195 90334 192554 124954 149090 27251 178994 185991 149141 65256

MHD4 MHD5 MHD6 MHD7 MHD8 MHD9 MHD10 MHD11 MHD12 MHD13

277934 283352 189604 193777 165877 344434 121164 103989 292750 56103

BSD1 BSD2 BSD3 BSD4 BSD5 BSD6 BSD7 BSD8 BSD9 BSD10

136814 104162 172284 118323 371856 204564 139328 54329 240185 127512

BSD11 BSD12 BSD13 JDD1 JDD2 JDD3 JDD4 JDD5 JDD6 JDD7

89615 127347 18567 55223 106164 60924 81854 139845 232503 172864

JDD8 JDD9 JDD10 JDD11 JDD12 PDD1 PDD2 PDD3 PDD4 PDD5

165452 46355 80896 256218 72933 100548 112507 144668 76916 104932

PDD6 PDD7 PDD8 PDD9 PDD10 PDD11 PDD12 PDD13 PDD14 PDD15

107130 112031 206017 146237 177468 121449 221327 20219 369032 184486

PDD16 PDD17 PDD18 PDD19 PDD20 PDD21 PDD22 PDD23 PDD24 PDD25

276547 132038 129267 186012 81537 137625 110552 165297 360516 213845

PDD26 PDD27 PDD28 PDD29 PDD30 PDD31 PDD32 PDD33 PDD34 PDD35

147329 84183 71162 27162 174672 110060 51013 104945 62519 59567

PDD36 PDD37 PDD38 PDD39 PDD40 PDD41 PDD42 PDD43 PDD44 JSD1

59323 24346 37408 688 508 862 1349 5514 23617 87901

JSD2 JSD3 JSD4 JSD5 JSD6 JSD7 JSD8 JSD9 JSD10 SJD1

120084 82477 37057 122272 52808 33658 70819 40722 84640 112671

SJD2 SJD3 SJD4 SJD5 SJD6 SJD7 SJD8 SJD9 SJD10 SJD11

93330 161438 98888 94279 75507 167687 155856 57861 253110 41626

SJD12 SJD13 SJD14 SJD15 SJD16 QPD1 QPD2 QPD3 QPD4 QPD5

44011 33627 80104 51606 60797 137321 118708 106830 94351 68485

QPD6 QPD7 QPD8 QPD9 QPD10 QPD11 FXD1 FXD2 FXD3 FXD4

67735 74409 127936 153203 39756 92288 361185 176938 62388 108264

FXD5 FXD6 FXD7 FXD8 FXD9 FXD10 FXD11 FXD12 FXD13 CMD1

65389 89163 62589 28457 57341 15413 29151 16710 10475 113442

CMD2 CMD3 CMD4 CMD5 CMD6 CMD7 CMD8 CMD9 CMD10 CMD11

60111 42737 45926 40823 26265 29894 40741 25274 53996 7061

CMD12 CMD13 CMD14 CMD15 CMD16 CMD17 CMD18 CMD19 CMD20 CMD21

23416 27466 11646 15112 99134 9581 27916 1695 35 145125


