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Modeling Product Diffusion and Repeat Purchases: A Fractional Calculus-

Based Approach 

Abstract 

Classic product diffusion models such as the Bass Model typically consider only initial product 

purchases. For products that experience frequent upgrades or have multiple versions, repeat 

product purchases can constitute a significant proportion of sales. Despite the long tradition of 

product diffusion research, there exists no viable model option when repeat purchases are 

inseparable from initial ones in sales data. The present study proposes a new sales growth model, 

termed the Generalized Diffusion Model with Repeat Purchases (GDMR), to fill this void. The 

GDMR treats the sales process as an economic process with memory and formulates the growth 

rate of sales using a non-integer-order integral equation rather than an integer-order differential 

equation typically used in existing diffusion models. The GDMR is parsimonious and easy to 

implement. Empirical results show that the GDMR fits sales data with varying proportions of 

repeat purchases, thus making it a suitable model for a wide variety of products. We also 

demonstrate that the GDMR can effectively recover adoption (i.e., initial sales) curves when only 

sales data is available, thus underscoring its theoretical validity. Furthermore, the GDMR can be 

extended to incorporate marketing mix variables, further enhancing its value in managerial 

decision-making.  

Keywords: Diffusion of innovation, repeat purchases, replacement, multi-unit ownerships, 

fractional calculus  
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Modeling Product Diffusion and Repeat Purchases: A Fractional Calculus-
Based Approach 

1. Introduction 

Pioneering diffusion of innovation studies have suggested that the cumulative diffusion of an 

innovation follows an S-shaped curve and the noncumulative diffusion follows a bell-shaped 

curve (Rogers 2003). Much of the effort in modeling the diffusion of innovation has been 

dedicated to developing mathematical formulations that possess such properties. The seminal 

Bass Model (Bass 1969) is probably the most well-known result from such endeavors. Since its 

inception, thanks to its great empirical performance and ease of implementation, the Bass Model 

has spawned a large body of literature covering diverse fields such as marketing, operations, 

information systems, and other nonbusiness disciplines. Researchers have extended and applied 

the Bass Model to study the diffusion of products including durable goods, nondurable goods, 

information products, and business practices such as IT outsourcing (Bass, Krishnan, and Jain 

1994, Hu, Saunders, and Gebelt 1997, Mahajan, Muller, and Wind 2000, Bass 2004). 

As a diffusion model, the Bass Model is concerned “only with the timing of the initial 

purchases” (Bass 1969). If only initial purchases (or simply, adoptions) are counted, the market 

saturation effect comes into play; hence, after a market peak is reached, the rate of adoptions 

drops monotonically and asymptotically approaches zero. This trend is illustrated by the 

symmetric dashed curve shown in Figure 1. 

 
Figure 1. Sales vs. Adoptions 

Sales (including initial and repeat purchases) 

Adoptions (initial purchases only) 
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In practice, however, only adoption data is rarely available. What is typically available is 

sales data that includes both initial and repeat purchases. The plot of sales data often exhibits an 

asymmetrical bell-shaped pattern, as illustrated by the solid curve shown in Figure 1. In fact, 

Bass (1969) himself points out that “sales often grow to a peak and then level off at some 

magnitude lower than the peak” and that the “stabilizing effect is accounted for by the relative 

growth of the replacement purchasing component of sales and the decline of the initial purchase 

component” (Bass 1969, p. 215). 

Even though Bass acknowledges that his model is concerned with initial purchases only, the 

Bass Model is frequently applied to fit sales data that counts both initial purchases and repeat 

purchases. Such applications are reasonable when repeat purchases are infrequent or negligible, 

which might be the case for durable products during the early stages of product sales.  

For products that have frequent upgrades or multiple versions, repeat purchases can 

constitute a significant proportion of sales even in the early stages of product diffusion, thus 

limiting the application of the Bass Model. When significant repeat purchases exist, the fitting 

and forecasting performance of the Bass Model may be poor, particularly when the sales trend 

begins to assume an asymmetrical shape after the peak point of diffusion. Even if the model fits 

and predicts well in some situations despite the existence of considerable repeat purchases, the 

parameter estimates will be different from those obtained using only initial purchases data.  

Furthermore, existing adopters’ enthusiasm toward an existing product tends to die down 

with time, and products built on newer technologies will inevitably emerge, hence existing 

adopters’ tendencies to make repeat purchases tend to decline over time. This creates an 

additional challenge in accurately modeling the rate of repeat purchases and subsequently sales. 
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The primary objective of this study is to develop a generalized sales growth model that 

incorporates both initial and repeat purchases and performs well despite the challenges. 

In the prior literature, researchers have proposed model extensions to account for repeat 

product purchases made to replace existing product units or for adopting multiple product units. 

Olson and Choi (1985) propose a model assuming that sales comprise only adoptions and 

replacements, and that the replacement hazard function follows the Rayleigh distribution 

(Papoulis and Pillai 2002). The Olson-Choi Model is developed for cases in which the number of 

products in use is available.  

Kamakura and Balasubramanian (1987) propose a similar model that generates long-term 

forecasts by incorporating the adoption and replacement components of sales. Benefiting from a 

more flexible hazard function to capture replacement purchases, their model is applicable with or 

without data for replacement sales. Their model uses information from similar products when 

data for replacement purchases is not available. Steffens and Balasubramanian (1998) further 

advance the modeling of replacement sales by allowing the distribution of the service life of 

replaced products to vary over time.  

Focusing on the PC processor industry, Gordon (2009) introduces a dynamic structural 

model that explicitly considers product replacement decisions under uncertain future product 

quality and price. Gordon’s model concentrates specifically on product replacements due to 

obsolescence as a result of product upgrade releases. The model requires highly specific data to 

function as it uses a composite dataset including sales, ownership, price, and product quality. 

Due to data limitations, Gordon’s model does not consider multi-unit ownership purchases (e.g., 

three TV sets in a household). 
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The aforementioned models have their focus on adoptions and replacement purchases. There 

are other models from the prior literature that have considered other components of sales, in 

particular multi-unit ownership purchases, in addition to adoptions and replacements. Dodson 

and Muller (1978) propose a model that captures the type of asymmetric sales trend illustrated by 

the solid curve in Figure 1 without decomposing sales into multiple components. The market 

they consider is composed of three groups, i.e., those who are not aware of the product, those 

who are aware of the product but have not made a purchase, and those who have purchased the 

product. Although the portrayed interaction between adopters and non-adopters is insightful, 

their model cannot be operationalized if the data for the different market groups is not available. 

Based on econometric and simulation models, Bayus, Hong, and Labe (1989) incorporate 

first time sales, replacement sales, additional-unit sales, and institutional sales into their analysis 

of color television set sales. As stated by Steffens (2003), Bayus et al.’s model is developed to 

perform well over short terms. Steffens (2003) presents a model for sales resulting from multi-

unit ownership purchases based on the Bass Model. His model differs from Bayus et al.’s in that 

it imposes a saturation level on multi-unit ownerships, which makes the model applicable for 

longer time frames. 

Researchers have also developed models for repeat purchases of products for a specific 

industry. For instance, Lilien, Rao, and Kalish (1981) propose a highly specialized model to 

project sales of prescription drugs as a function of a focal pharmaceutical company’s own 

detailing effect, competitors’ detailing effect, and word of mouth. In a subsequent study, Rao and 

Yamada (1988) provide further empirical support for the model by Lilien, Rao, and Kalish, then 

propose an alternative method for developing priors for the new drug’s parameters, and  

demonstrate how the parameters can be updated after sales data becomes available. Because 
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Lilien, Rao, and Kalish’s and Rao and Yamada’s models are specifically designed for 

prescription drugs, they cannot be used to predict sales of other product categories.  

Our review of the literature suggests that there is a need for a comprehensive model that can 

fit aggregate sales data that records both initial purchases and repeat purchases including both 

replacements and multi-unit ownerships. The models presented in the extant literature are 

applicable mostly when separate data for distinct sales components are available; however, in 

practice, most of the times only aggregate product sales data is available. Therefore, in this 

study, we develop a model that can capture the sales pattern illustrated by the solid curve in 

Figure 1 without separating different sales components. 

The model we propose is termed as the Generalized Diffusion Model with Repeat Purchases 

(GDMR). By treating the sales process as an economic process with memory, we are able to 

utilize a branch of mathematics named fractional calculus to develop this model. Specifically, 

the GDMR generalizes the fundamental differential equation governing the Bass Model, and 

employs a non-integer integral operator with flexible order, thereby rendering the Bass Model a 

special case of the extended model. The GDMR adopts an approach that is different from those 

in the prior literature in that it captures the sales growth rate using a non-integer order integral 

equation, rather than an integer-order differential equation as used in the prior literature.  

Compared with the existing models, the GDMR has the following important advantages:  

 Developed by adding only one parameter to the classic Bass Model, the GDMR retains the 

Bass Model’s parsimony as well as its insightful behavioral explanation concerning adopters’ 

decisions in a diffusion process, which have been two of the main reasons for its extensive 

application in academic research and practice.  
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 The GDMR can count both replacement and multi-unit ownership purchases, further 

broadening its application compared to models that include only one of these repeat-purchase 

components. Further, the GDMR is easy to implement and can fit sales data with varying 

frequencies of repeat purchases, making it a suitable model for a wide variety of sales 

scenarios.  

 Marketing mix variables can be incorporated into the GDMR, thus further enhancing its 

potential in helping firms make better marketing decisions. 

In addition to these theoretical advantages, our empirical analysis shows that the GDMR 

delivers superior performance in both model fitting and forecasting relative to other models 

proposed in the extant literature.  

The rest of this paper is organized as follows. In Section 2, we discuss what constitutes repeat 

purchases. Section 3 presents the model development of the GDMR. Empirical testing and 

related discussions are summarized in Section 4. Concluding remarks are presented in Section 5. 

2. Defining Repeat Purchases 

Before delving into model development, we first discuss the drivers of repeat purchases and a 

conceptual framework that helps explain the types of innovations and clarify what qualify as 

repeat purchases. In other words, we explain our unit of analysis that helps define the scope of 

adoptions and repeat purchases.  

Repeat purchases may result from either product replacements (e.g., buying a new TV set to 

replace an old one) or multi-unit ownerships (e.g., one household owning multiple TV sets). 

Drivers of replacement purchases vary from nondurable to durable products. For nondurable 

products, replacement usually occurs as the result of consumption (Kamakura and 

Balasubramanian 1987). For durable products, replacement typically takes place when a product 
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under consumption fails to meet the requirements of the user (Kamakura and Balasubramanian 

1987; Steffens 2003). This failure may be caused by perceived or actual wear and tear as a result 

of consumption or by changes in a user’s own needs or expectations that can only be met by a 

different edition or generation of the original product. In high-tech markets, in particular, 

replacement is often driven as much by product obsolescence as wear and tear, as these markets 

experience frequent changes in the forms of quality improvements and/or price decreases 

(Gordon 2009). 

Motivations behind multi-unit adoptions may vary (Steffens 2003). Common reasons 

include, for example, using the product in different locations (e.g., TV sets for different rooms of 

a house, desktop computers for office and for home), providing extra capacity for peak demand 

(e.g., multiple photocopiers at the same location), or meeting the demand for different 

functionalities that require multiple editions of a product (e.g., a sedan vehicle for daily 

commutes and a sport utility vehicle for leisure trips).  

We next draw on the typology of product innovation by Henderson and Clark (1990) to 

define our unit of analysis — a family of products for which adoptions and repeat purchases take 

place. Henderson and Clark (1990) classify product innovations based on the amount of 

corresponding changes to the product’s core components and product architecture. For example, 

a product innovation is considered radical if it introduces a new set of designs to the core 

components as well as a new architecture that links the core components. If the design of the 

core components and the architecture undergo only small improvements, the innovation is 

deemed incremental. In this study, we count a new purchase as a repeat purchase only if the 

newly purchased product is the same as the original product or a variation of the original product 

resulting from an incremental innovation. In other words, our unit of analysis is a line of 
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products/innovations that differ incrementally. Within such a unit of analysis, the first purchase 

made for any of the products in the product line is considered the initial purchase, substituting a 

product by another in the same product line constitutes replacement, and simultaneous ownership 

of multiple units of the product line represents multi-unit ownership.  

As technology advances and different products emerge based on innovation types other than 

incremental innovation, adopters may leave a focal product line and buy new products. When 

they buy such new products, even if they have similar functionalities, the purchases can no 

longer be counted as repeat purchases; instead, they are departures from the focal product line. 

For example, we can count the purchases of new models of DVD players as repeat purchases, but 

we need to treat upgrades to Blu-ray players as departures. While replacements and multi-unit 

ownerships increase repeat purchases, departures decrease repeat purchases. The goal of this 

study is to develop a unified model that can capture adoptions, replacements, multi-unit 

ownership purchases, as well as the declining rate of repeat purchase due to departures. 

3. Generalized Diffusion Model with Repeat Purchases 

Given that product sales typically consist of both adoptions (initial purchases) and repeat 

purchases, we need to consider the two sales components separately. While the rate of adoptions 

at any given time t can be estimated using existing diffusion models such as the Bass Model 

(1969), it is far less straightforward to model the rate of repeat purchases at time t. For example, 

because existing adopters who have purchased a focal product at different times in the past are 

not expected to have the same probability of making repeat purchases at the present time, we 

cannot multiply the number of existing adopters by a constant multiplier to generate the rate of 

repeat purchases. Instead, to have a reliable estimate of the rate of repeat purchases at time t, a 
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model should not just check the total number of adopters at a given time t, but also memorize the 

focal product’s entire adoption growth history by time t.  

3.1. Modeling Framework for Repeat Purchases: Economic Process with Memory 

After extensive literature review, we find that sales processes with repeat purchases fit the 

description of processes with memory (Boltzmann 1876), or more specifically economic 

processes with memory (Beran 1994, Baillie 1996, Teyssière and Kirman 2006, Palma 2007). 

According to Tarasov (2018), in an economic process with memory, memory captures the 

dependence of an output (response variable) at the present time on the history of the changes of 

an input (impact variable) in a given time frame. Applying Tarasov’s memory concept, we can 

interpret the sales of a product as an economic process with memory, in which adoptions is the 

input, sales is the output, and memory defines the percentage of adoptions from each time in the 

past that generate repeat purchases at the present time. 

Regarding the methods used to study economic processes with memory, Tarasov (2018) 

points out “it is known that derivatives of positive integer orders are determined by the properties 

of the differentiable function only in an infinitesimal neighborhood of the considered point. As a 

result, differential equations with integer-order derivatives cannot describe processes with 

memory.” Tarasov then suggests a powerful tool that can be used to describe economic processes 

with memory. The tool is called fractional calculus, which represents a branch of mathematics 

that generalizes differentiation and integration so that non-integer-order differential and integral 

operators become possible. Interested readers can refer to Samko, Kilbas, and Marichev (1993), 

Podlubny (1999), Kilbas, Srivastave, and Trujillo (2006), and Baleanu Diethelm, Scalas, and 

Trujillo (2012) for comprehensive reviews of the fractional calculus literature. 
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Drawing on the prior literature (Samko et al. 1993, Kilbas et al. 2006), Tarasov (2018) 

suggests that an economic process with power-law type memory can be captured by the 

following fractional integral equation: 

𝐼ఈ𝑋(𝑡): = ∫
ଵ

(ఈ)
(𝑡 − 𝜏)ఈିଵ𝑋(𝜏)𝑑𝜏 

௧


.                                                (1) 

In this equation, X(t) represents the input of the economic process being modeled. The LHS is 

the output, where 𝐼ఈ is a non-integer fractional integral of order 𝛼 (𝛼 > 0). The RHS of this 

equation is obtained based on the Reimann-Liouville fractional integral (Kilbas et al. 2006), 

which is a generalization of the standard n-th integral. 
ଵ

(ఈ)
(𝑡 − 𝜏)ఈିଵ is called the kernel of the 

fractional integral, which is interpreted as a memory function that is capable of capturing how the 

output at the present time depends on the history of the input up to the present time. Γ(𝑥), the 

Gamma function, for 𝑥 > 0, has the following form: 

 Γ(𝑥) = ∫ 𝑡௫ିଵ𝑒ି௧𝑑𝑡
ஶ


. (2) 

In the reminder of this section, we develop our repeat purchases model based on this 

fractional integral equation governing an economic process with memory. 

3.2. Rate of Adoptions based on the Bass Model  

To utilize fractional integral in Eq. (1), we first need to specify the input variable X(t). For the 

product sales processes we are considering in this study, X(t) represents the rate of adoptions 

(i.e., initial sales), and the output 𝐼ఈ𝑋(𝑡) captures the rate of sales, including both adoptions and 

repeat purchases.  

The rate of adoptions can be defined by a diffusion model. Pioneering scholars have 

presented various diffusion models to estimate and predict diffusion of innovation in a 

population. Comprehensive reviews of these models have been provided by Meade and Islam 
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(1998) and Mahajan et al. (2000). Applying a bell-shaped growth curve to capture a 

noncumulative diffusion process is at the center of these endeavors. A mathematical realization 

of the bell-shaped diffusion process is represented by the seminal Bass Model (Bass 1969), 

which forms the foundation of the repeat purchases model we propose in this study. 

The Bass Model stipulates that the noncumulative rate of adoptions of a product at time t, 

denoted by y(t), and the cumulative number of adoptions, denoted by Y(t), satisfy the following 

first-order differential equation:  

 
ௗ(௧)

ௗ௧
= 𝑦(𝑡) = 𝑝𝑚 + (𝑞 − 𝑝)𝑌(𝑡) −




𝑌ଶ(𝑡), 𝑡 ≥ 0,   (3) 

where p and q are coefficient of innovation and coefficient of imitation, respectively, and m 

represents the size of the market potential. Note that Eq. (3) is an integer-order differential 

equation. Solving this equation with the initial condition Y(0) = 0 yields: 

 𝑌(𝑡) =
(ଵିష(శ))

(ଵା



ష(శ))

, (4) 

 𝑦(𝑡) =
(ା)మ



ష(శ)

(ଵା



ష(శ))మ

. (5) 

The noncumulative version of the Bass diffusion curve, y(t), effectively captures the bell-shaped 

growth pattern of adoptions, whereas the cumulative version Y(t) exhibits the well-known S-

shaped curve.  

3.3. Integrating GDMR and Economic Process with Memory 

Built on fractional calculus, or more specifically Eq. (1), and the Bass Model, we develop an 

extension of the Bass Model that is capable of capturing both adoptions and repeat purchases. In 

this new model, the sales rate at time t, 𝑆(𝑡), equals a fractional integral of the adoption rate, 

𝑦(𝑡), which, in turn, equals the integral of the adoption rate times the memory function 
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(
ଵ

(ఉ)
(𝑡 − 𝜏)(ఉିଵ)) that specifies how much past adopters contribute to repeat purchase at the 

present time. Formally, we have 

𝑆(𝑡) = 𝐼ఉ𝑦(𝑡) = ∫
ଵ

(ఉ)
(𝑡 − 𝜏)(ఉିଵ) 𝑦(𝜏)𝑑𝜏,      𝑡 > 0

௧


,                            (6) 

where 𝑦(𝑡) is defined by the Bass Model, the new parameter β (0 ≤ β ≤ 1), which we term the 

coefficient of repeat purchases, is the only new parameter added to the Bass Model, and its value 

determines the proportion of repeat purchases. When β = 0, Eq. (6) reduces to the Bass Model. 

We call this extension model the Generalized Diffusion Model with Repeat Purchases or GDMR. 

It can be shown that, by adding repeat purchases to the adoptions, the GDMR generates 

asymmetrical bell-shaped sales growth curves that resemble the one illustrated in Figure 1.  

To better understand the GDMR, let us take a further look at the memory function in the 

RHS of Eq. (6), i.e., ቂ
ଵ

(ఉ)
(𝑡 − 𝜏)(ఉିଵ)ቃ. Based on this memory-based interpretation, changes of 

the output variable (i.e., sales) in the GDMR at the current time depends on the value of the input 

variable (i.e., adoptions) both in the past and at the current time (i.e., 0 ≤ 𝜏 ≤ t). The RHS of Eq. 

(6) is a first-order integral of the rate of adoptions, i.e., 𝑦(𝜏), multiplied by the memory function, 

i.e., ቂ
ଵ

(ఉ)
(𝑡 − 𝜏)(ఉିଵ)ቃ. This means that, in calculating the rate of repeat purchases (and sales) at 

the current time t, the memory function assigns different weights to the past adoptions up to time 

t. In other words, although all past adoptions can lead to repeat purchases, they contribute to 

repeat purchases at different rates, as explained below. 

Note that the memory (kernel) function in Eq. (6) is a power-law type function (Tarasov 

2018), which assigns lower weights to earlier events and higher weights to more recent events, as 

illustrated in Figure 2. This implies that, on average, those who have adopted more recently are 
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more likely to make repeat purchases than are those who have adopted earlier.1 Although it may 

appear interesting at first glance, this phenomenon has ample empirical support and is 

theoretically intuitive. First, repeat purchases typically include upgrades within the same product 

line. There is empirical evidence suggesting that more recent buyers are more likely to upgrade 

to a newer product version than earlier buyers are. For instance, an analysis of sporting game 

sales data shows that buyers of more recent game versions are more likely to buy current year’s 

version than are those who have bought older versions (Qu, Jiang, Lotfi 2018).  

Figure 2. Memory Function Assigns More Weight to More Recent Adoptions (t=10) 

 
Second, prior studies show that consumers’ enthusiasm toward a product tends to die down as 

the product gradually turns old in their eyes (e.g., the declining interest in wearable activity 

trackers (Mobility 2014), smartphones, tablet computers, laptop computers, and TVs (Business 

Insider 2016)). The decline in adopters’ enthusiasm and engagement results in a drop in their 

tendency to make multi-unit ownership and replacement purchases, thus leading to lower rate of 

repeat purchases for earlier adopters. Third, as explained before, repeat purchases refer to 

purchases of the original product or incrementally improved product versions/generations. When 

a new product-line built on innovation types other than incremental innovation (mainly radical 

                                                 
1 In Appendix A we explain the memory characteristics of the GDMR. 
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radical) emerges, departures will likely occur. For example, the emergence of Blu-ray 

technology attracted consumers away from DVD players. Similarly, the growth in popularity of 

smartphones contributed to the decline in that of MP3 players (Statista 2019b). Given that the 

decline in interest in a focal product over time is largely due to developing interest in an 

alternative product, departures also suggest the pattern that, on average, earlier adopters 

contribute less to repeat purchases. Since the first, second, and third points mentioned above all 

suggest a lower (higher) rate of repeat purchases for earlier (more recent) adopters, the rate of 

repeat purchases is expected to follow a pattern governed by the power-law function.  

This memory-based interpretation of the GMDR shows that, despite its parsimonious form, 

the model can capture the complex dynamics of repeat purchase processes, thus providing further 

theoretical justification for using fractional calculus to model repeat purchases. 

3.4. Coefficients of Repeat Purchases and Repeat Purchase Scenarios 

Recall that in the GDMR, the coefficient of repeat purchases (β) takes values between 0 and 1, 

i.e., 0 ≤ β ≤ 1. In this subsection, we examine three repeat purchase scenarios, which can help us 

better understand the link between the frequencies of repeat purchases and the coefficient of 

repeat purchases (β).  

We first consider a high repeat purchase scenario in which the expected frequency of repeat 

purchase (φ) by existing adopters equals 1, implying that, on average, each existing adopter 

makes one repeat purchase in each unit time. We call this scenario periodic-repeat-purchases. 

Under this scenario, the rate of repeat purchases at time t equals the cumulative number of 

adoptions just before time t. This number is added to the instantaneous rate of adoption exactly at 

time t to produce the sales rate at t. This means that the sales rate at time t equals the cumulative 

number of adoptions up to and including time t. Mathematically, this implies that the memory 
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function equals 1 in the GDMR, which is achieved at β = 1. Therefore, under the periodic-repeat-

purchases scenario, we have  

                                        𝑆(𝑡) = ∫ 𝑦(𝜏) 𝑑𝜏
௧


= 𝑌(𝑡) = 𝐼ఉୀଵ𝑦(𝑡).                                          (7) 

In this case, 𝛽 = 𝜑 = 1, and the noncumulative sales rate at time t equals the cumulative number 

of adoptions at time t, hence following an S-shaped curve.  

We next examine another extreme scenario, in which no repeat purchase occurs (φ = 0), 

hence sales are composed of only adoptions. We call this the adoption-only scenario, under 

which the sales rate follows the noncumulative adoption rate defined by the Bass Model, which 

requires β = 0 in the GDMR: 

                                                     𝑆(𝑡) = 𝑦(𝑡) = 𝐼ఉୀ𝑦(𝑡).                                                    (8) 

In this case, the sales rate follows a symmetrical bell-shaped curve.  

In most practical scenarios, the average frequency of repeat purchases likely falls between 

the two boundary scenarios described above, i.e., 0 < 𝜑 < 1.2 Specifically, existing adopters, on 

average, make more than zero but less than one repeat purchases per unit time. Integrating such a 

rate of repeat purchases into the instantaneous adoption rate yields a sales curve that falls 

between the S-shaped curve (with β =1) and the symmetrical bell-shaped curve (with β =0). For 

this intermediate scenario, we need to use the fractional integral of noncumulative adoption 

defined in Eq. (6), with 0 < β < 1, to represent the sales rate. In this scenario, the coefficient of 

repeat purchases (β) increases with the frequency of repeat purchases (φ) and the exact rate at 

which adoptions at a given time in the past contribute to repeat purchases at the current time is 

determined by the memory (kernel) function in the RHS of Eq. (6). 

                                                 
2 In rare cases where the average frequency of repeat purchases is greater than 1, there are two possible solutions: (i) redefine the 
unit of time so that the frequency falls below 1, or (ii) add another parameter to the GDMR so that the magnitude of a sales curve 
can be further adjusted. The details of the second approach is provided in Appendix C. 
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The dynamics of the GDMR under the three discussed scenarios are illustrated in Figure 3. In 

this figure, the bottom bell-shaped curve represents the adoption-only scenario (β = 0); the top S-

shaped curve depicts the periodic-repeat-purchases scenario (β = 1). In between the two 

boundary curves are intermediate curves corresponding to 0 < 𝛽 < 1. Increasing the value of 𝛽 

causes the sales curve to shift away from the symmetrical bell-shaped curve corresponding to 𝛽 

= 0 and move closer to the S-shaped curve corresponding to 𝛽 = 1, implying a higher sales rate 

due to more repeat purchases. 

  

Figure 3. Three Scenarios under the GDMR 

Built on a fractional integral, Eq. (6) defines the sales rate with repeat purchases. The rate of 

repeat purchases at time t, denoted by R(t), is the difference between sales rate and adoption rate 

at t: 

 𝑅(𝑡) = 𝑆(𝑡) − 𝑦(𝑡) = 𝐼ఉ𝑦(𝑡) − 𝑦(𝑡).                                            (9) 

As shown in Eqs. (3) and (5), the adoption rate, as defined in the Bass Model, depends on the 

adoption parameters p, q, and m, and does not change with 𝛽. The sales rate S(t), as shown in 

0
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On average, each adopter makes a repeat purchase in each time-period 

𝛽 = 𝜑 = 1:  𝑆𝑎𝑙𝑒𝑠(𝑡) = 𝐼ଵ𝑦(𝑡) = 𝑌(𝑇) 
  

  
Sales is composed of only adoptions (no repeat purchase) 

𝛽 = 𝜑 = 0:  𝑆𝑎𝑙𝑒𝑠(𝑡) = 𝐼𝑦(𝑡) = 𝑦(𝑡) 
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Figure 3, increases with 𝛽. Therefore, the rate of repeat purchases defined in Eq. (9) is an 

increasing function of 𝛽.  

3.5. Approximation and Dynamics of the GDMR 

Estimating parameters based on Eq. (6) may present difficulties due to the complexity of 

computation associated with the fractional integral operator. Therefore, we need a mathematical 

operator that has the desirable properties of Eq. (6) and is computationally feasible. We introduce 

the operator  𝐼,
ఉ  instead of Iβ and reformulate the GDMR as: 

 𝑆(𝑡) = 𝐼,
ఉ

𝑦(𝑡), (10) 

where n and k are parameters of the approximate operator. Increasing the values of n and k 

results in 𝐼,
ఉ  converging to Iβ. The detailed derivations of the approximate operator and its 

convergence to the original one are demonstrated in Appendix B.  

 

Figure 4. Dynamics of GDMR with Respect to 𝜷 (p = 0.005, q = 0.6, and m = 1) 

Based on the operationalization presented above, we conduct numerical analysis to examine 

how the rate of repeat purchases change with the coefficient of repeat purchases (𝛽). The results 

are summarized in Figure 4, which illustrates how the GDMR sales curve varies with 𝛽 (values 

of other parameters are fixed at p = 0.005, q = 0.6, and m = 1). 

𝛽 = 1  

𝛽 = 0.9  

𝛽 = 0.7  

𝛽 = 0.5  

𝛽 = 0  
𝛽 = 0.3  
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Figure 4 provides a clearer picture how the sales curve changes with the value of the 

coefficient of repeat purchases (𝛽). Consistent with our previous theoretical predictions, a higher 

𝛽 value in the GDMR is linked to a higher sales curve, thus implying a higher level of repeat 

purchases. As the value of 𝛽 increases from 0 to 1, the sales curve moves further away from the 

bell-shaped curve with no repeat purchases and closer to the S-shaped curve representing one 

repeat purchase per unit time by existing adopters.   

3.6. Time to Peak Sales 

Based on the provided operationalization, we can also derive the time of peak sales, t*, for the 

GDMR by finding the root of the first derivative of sales as: 

  


 
(𝐼ఉ𝑦(𝑡)) = 0, (11) 

where 
ௗ

ௗ௧
𝐼ఉ𝑦(𝑡) is the Riemann–Liouville fractional derivative of order 1 − 𝛽 of y(t) (Kilbas et 

al. 2006). In our model extension, t* is the root of the Riemann–Liouville fractional derivative of 

order 1 − 𝛽 of the noncumulative adoption trend, whereas in the Bass Model, it is the root of the 

first order derivative of noncumulative adoption curve that leads to the peak point of adoption. 

3.7. Incorporating Marketing Mix Variables 

It is well understood that marketing mix variables (e.g., price and advertising) can affect a 

diffusion process. Likewise, it is expected that marketing mix variables can influence the 

magnitude of repeat purchases and subsequently that of the total sales. In this section, we 

examine how marketing mix variables can be incorporated into the GDMR. 

Prior research has explored various ways of accounting for the influence of marketing mix 

variables on the diffusion of products (Bass, Jain, and Krishnan. 2000). Here, we implement the 
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approach used in the Generalized Bass Model (GBM) (Bass et al. 1994). Specifically, we 

incorporate the marketing mix variables into cumulative sales by the GDMR as: 

 𝐶𝑢𝑚𝑆(𝑡) = 𝐼ఉାଵ[𝑦൫𝑋(𝑡)൯], (12) 

where CumS(t) is cumulative sales, y is periodic adoptions, and 𝑋(𝑡) is the cumulative marketing 

effort as defined in the GBM by Bass et al. (1994). For instance, including price (pr) and 

advertising (Adv), 𝑋(𝑡) takes the following form: 

  𝑋(𝑡) = 𝑡 +  𝛾 ∗ 𝑙𝑛 ቂ
(௧)

()
ቃ +  𝛿 ∗ 𝑙𝑛 ቂ

(௧)

()
ቃ, (13) 

where 𝛾 and 𝛿 are coefficients capturing the effects of changes in price and advertising, 

respectively. To differentiate it from the GDMR without marketing mix variables, we name the 

version with marketing mix variables the Generalized Diffusion Model with Marketing Mix 

Variables (GDMRX). GDMRX in its noncumulative form can be shown as: 

𝑆(𝑡) = 𝑥(𝑡) ∗ 𝐼ఉൣ𝑦൫𝑋(𝑡)൯൧,                                                 (14) 

where x(t) is noncumulative marketing effort as defined in the GBM.  

4. Empirical Analysis 

In this section, we empirically evaluate how well the GDMR performs compared to alternative 

models, how incorporating marketing mix variables influences model performance, and how the 

availability of separate datasets for adoptions and repeat purchases can further guide parameter 

estimation.3 

4.1. Benchmark Models 

Because the GDMR captures all components of sales including adoptions, replacement 

purchases, and multi-unit purchases, and all three sales components are expected to be present in 

                                                 
3 Sample source code for the empirical analysis is available from the authors upon request. 
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our datasets, we need to compare the GDMR with alternative models that also include adoptions, 

replacement purchases, and multi-unit purchases. However, unlike the broader literature on 

product adoption, the literature concerning repeat purchases is rather limited, and we could not 

find readily available models that explicitly incorporate the three components of sales. Therefore, 

we choose to develop our own benchmarks based on models proposed in the prior literature.  

For comparison purposes, we consider two benchmark sales models that incorporate initial 

purchases, replacements, and multi-unit ownerships. The first model incorporates the Bass 

Model for initial purchases, the Kamakura and Balasubramanian (KB) (1987) replacements 

model, and the Bayus et al. (BHL) (1989) multi-unit purchases model. For expositional 

convenience, we name this model the Bass-KB-BHL Sales Model. The second benchmark model 

is composed of the same initial purchases model and replacement model, but uses a different 

multi-unit purchase model developed by Steffens (2003). We name this model the Bass-KB-

Steffens Sales Model. To help readers better understand the two benchmark models, we next 

briefly elaborate on the KB Model, BHL Model, and Steffens Model. 

Kamakura and Balasubramanian (1987) formulate a product replacement model for durable 

products based on two assumptions: (i) a product is immediately replaced after it fails to perform 

up to users’ expectations, and (ii) these failures can be represented by a probability distribution 

function over all product units. The model can be expressed as: 

 𝑟(𝑡) =  ∑ [𝑦(𝑖) + 𝑟(𝑖)]௧ିଵ
ୀଵ [𝑆𝑢𝑟(𝑡 − 𝑖 − 1) − 𝑆𝑢𝑟(𝑡 − 𝑖)], (15) 

where [y(i) + r(i)] represents sales at time 𝑖 and is composed of initial purchases, 𝑦(𝑖), and 

product replacements, 𝑟(𝑖).4 Sur(τ ) is a survival function capturing the probability that a product 

                                                 
4 The model assumes that ownership of multiple units is insignificant. 
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unit fails after τ. For example, with truncated normal distribution as the distribution of survivals,5 

Sur(τ ) takes the following form: 

 𝑆𝑢𝑟(𝜏) =
(

ೢഓ

ಽ
ି)

(ି)
, (16) 

where w = h + ϕ(-h) / Φ(-h), ϕ(.) is the standard normal probability density function, and 

 Φ(𝑥) = ∫ 𝜙(𝑧)𝑑𝑧
ஶ

௭ୀ௫
. (17) 

Bayus et al. (1989) develop a model that explicitly considers multi-unit ownerships based on 

the premise that the older is the product unit in use, the more likely is the purchase of an 

additional unit. The proposed functional form is 

 𝑚𝑢𝑙(𝑡) =  ∑ 𝑠𝑖𝑢,௧ିଵ
௧ିଵ
ୀଵ 𝑔(𝑡 − 𝑖), (18) 

where mul(t) represents the number of multi-unit purchases at time t, g(τ) is the hazard rate for 

multi-unit purchases at 𝜏, and 

 𝑠𝑖𝑢,௧ = [𝑦(𝑖) + 𝑟(𝑖) + 𝑚𝑢𝑙(𝑖)]𝑆𝑢𝑟(𝑡 − 𝑖). (19) 

In this model, g(τ) is empirically determined by Bayus et al. (1989). Following Steffens (2003), 

we adopt a logistic growth function for g(τ): 

 𝑔(𝜏) =
ఋ(ଵିషഀ )

(ଵାఉషഀ )
. (20) 

Steffens (2003) views the purchase of an additional unit as a diffusion process and formulates it 

based on the Bass Model: 

 
ୢ௨ (௧)

ୢ௧
= (𝜋𝑌(𝑡) − 𝑚𝑢𝑙𝑡(𝑡))(𝑎 + 𝑏 ∗ 𝑚𝑢𝑙𝑡(𝑡)), (21) 

where mult(t) is the cumulative number of first additional units purchased by users, Y(t) is the 

cumulative adoptions representing the upper limit for multi-unit ownerships, 𝑎 represents the 

external influences on first multi-unit adoptions, and b represents the word-of-mouth influences 

                                                 
5 There is extensive support in the literature for using truncated normal distribution for this purpose (Steffens 2003). 
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on first multi-unit adoptions. Steffens suggests that the adoption of more additional units by 

users (e.g., second additional units, third additional units) can be similarly modeled. The Steffens 

Model does not have a closed-form solution and can only be numerically integrated. 

By summing up the aforementioned models for initial, replacement, and multi-unit 

ownership purchases, we obtain two benchmark models: Bass-KB-BHL and Bass-KB-Steffens. 

4.2. Comparison with Benchmark Models Using Only Sales Data 

We use three aggregate sales datasets to evaluate the model fitting and forecasting performance 

of the GDMR and the two benchmarks. The datasets include annual sales of Notebook 

Computers from year 2005 to 2014 (Morgan Stanley 2015), PC total global annual sales from 

year 2006 to 2015 (Statista 2014), and iPad sales from the third quarter of year 2010 to the 

second quarter of 2017.6 All three datasets include only aggregate sales data, and a breakdown 

into adoption purchases, replacement purchases, and additional-unit purchases is unavailable. 

Following the parameter estimation approach by Srinivasan and Mason (1986), we use the 

changes in the cumulative number of adoptions between two consecutive periods to represent the 

noncumulative adoptions trend in the benchmark models. 

For the first two datasets, due to potential left-hand truncation, we add an intercept, 𝑠, to 

both the GDMR and the benchmark models to help improve model estimation. In our application 

of the KB replacement model, we assume that sales include additional-unit purchases as well 

(i.e. sales in Eq. (15) is of the form [y(i) + r(i) + mul(i)] instead of [y(i) + r(i)]). Because our test 

data is for consumer electronics, to guide the estimation of the benchmarks’ replacement 

component, we assume that the average life of the products is less than or equal to eight years.  

                                                 
6 Obtained from Apple’s quarterly summaries. For instance, 2013 Q4 data is found in https://www.apple.com/newsroom/pdfs/ 
q4fy13datasum.pdf. Starting from the third quarter of 2010, we sum four quarters of sales to derive one year worth of iPad sales. 
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Table 1. GDMR Parameter Estimation for Notebook Computer Sales 
 Estimate Standard 

Error 
t-statistics P-value 

β 0.46 0.110 4.9 0.00 

𝑝 0.019 0.005 4.5 0.01 

𝑞 0.627 0.108 5.7 0.00 

𝑚 4.6×108 1.5×10଼ 3.2 0.02 

𝑠 4.8×10 9.9×106 4.9 0.00 
 

Table 2. GDMR Parameter Estimation for PC Sales 
 Estimate Standard 

Error 
t-Statistics P-value 

β 0.24 0.130 5.70 0.00 

𝑝 0.014 0.009 1.56 0.18 

𝑞 0.725 0.201 3.60 0.02 

𝑚 4.8×108 2.0×10଼ 2.35 0.07 

𝑠 2.3×10଼ 1.7×10 13.44 0.00 
 

Table 3. GDMR Parameter Estimation for iPad Sales 
 Estimate Standard 

Error 
t-Statistics P-value 

β 0.48 0.018 28.44 0.00 

𝑝 0.05 0.003 18.18 0.00 

𝑞 1.17 0.046 25.36 0.00 

𝑚 1.53×10଼ 5.5×10 27.70 0.00 
 

The GDMR parameter estimates for the three products are summarized in Tables 1, 2, and 3, 

respectively. As we can see from the tables, except for parameter p for PC sales, all other 

parameter estimates for all three products are statistically significant, indicating a good overall 

model fit in all three cases. The value of the coefficient of repeat purchases (β) ranges from 0.24 

to 0.48 indicating that sales curves for these three products lie between the bell-shaped and S-

shaped curves. Therefore, the traditional diffusion parameter values for p, q, and m would have 

been biased without explicitly incorporating repeat purchases in the model formulation. 
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Furthermore, the estimate for 𝑠 is statistically significant for the first two products, showing that 

it is an effective way to addressing the left-hand data truncation issue. 

We also compare the GDMR against the two benchmark models using the three datasets; 

their model fitting and forecasting performance are summarized in Table 4. The fitting accuracy 

is measured in terms of R2 and MAPE (mean absolute percentage error). From the summary, it is 

clear that the GDMR, despite having fewer parameters, consistently leads to better fits than do 

the two benchmark models.  

Table 4. Comparison of Fit and Forecast for GDMR, Bass-KB-BHL, and Bass-KB-Steffens 

          Full data fit  Forecast 
 

R2 
 

MAPE 
  Years Ahead MAPE 

One Two    
 GDMR 0.9995 1.68   14.46 8.79   

Notebook 
Computer 

Bass-KB-BHL 0.9054 10.09   6.83 31.09   

 Bass-KB-Steffens 0.9573 5.40   4.64 25.75   

          

 GDMR 0.9995 2.08   0.94 8.84   

PC Bass-KB-BHL 0.6731 5.25   10.28 8.35   

 Bass-KB-Steffens 0.8390 3.11   10.28 18.11   

          

 GDMR 0.9999 1.34   3.10 1.90   

iPad Bass-KB-BHL 0.7763 15.31   14.55 37.84   

 Bass-KB-Steffens 0.8439 9.05   14.48 37.62   

 
The forecasting performance of the three models is evaluated based on the MAPE of one-

year- and two-years-ahead forecasting. The results in Table 4 show that, with the exception of 

one-year-ahead forecast for notebook computers and two-years-ahead forecast for PCs (for 
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which BassKB_Steffens and Bass-KB-BHL respectively are better than the GDMR), the 

forecasting performance of the GDMR is also better than that of the benchmark models. 

The model fitting results for the GDMR, Bass-KB-BHL, and Bass-KB-Steffens are depicted 

in Figures 5, 6, and 7 for the three datasets. To contrast these repeat purchase models with the 

adoption-only Bass Model, we include the fitted Bass diffusion curve in these figures as well. 

For iPad sales, the GDMR appears to fit the data better than the benchmarks after the sales 

process peaks. This can be attributed to the fact that while the GDMR does account for the 

decline-over-time in the rate of repeat purchases, while the benchmarks do not. As expected, the 

Bass Model fits the data reasonably well before the peak point of sales, but declines much more 

quickly than the other three models after the peak, resulting in poor model fits. This is 

particularly obvious in Figure 7 for iPad sales, where the fitted Bass Model curve is clearly off. 

Therefore, the Bass Model is not recommended when repeat purchases cause the aggregate sales 

to exhibit an asymmetric curve. For this reason, the Bass Model is excluded from the rest of the 

performance comparisons. 

 

 

Figure 5. Comparison of Model Fitting for Notebook Computer Sales Data 2005–2014 
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Figure 6. Comparison of Model Fitting for the Global PC Sales Data 2006–2015 
 

 
Figure 7. Comparison of Model Fitting for iPad Sales Data (Q3 of 2010 to Q2 of 2017) 

With all results considered, we conclude that the GDMR is a better model for both model 

fitting and forecasting. 

4.3. Empirical Analysis with Marketing Mix Variables 

We use iPod sales from 2004 to 2014, obtained from Apple’s quarterly summaries, to illustrate 

the performance of the proposed model with marketing mix variables included (see Eq. (13)). To 

obtain the average selling price of the iPod, we divide the revenue generated by iPod sales by the 

corresponding number of units sold. The comparison of model fitting between the GDMR and 
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the GDMRX is shown in Figure 8. The parameter estimates and model fitting measures are 

summarized in Table 5. 

 
Figure 8. GDMR and GDMRX for the iPod Sales Data 

Table 5. GDMR and GDMRX Parameter Estimates, R2, and SSE for iPod Sales 

 β 𝑝 𝑞 𝑚 𝛾 R2 SSE 

GDMR 0.278 

(0.066) 

0.037 

(0.004) 

0.656 

(0.066) 

2.18×108 

(0.33×108) 

- 0.9998 9.8×1013 

GDMRX 0.21 

(0.096) 

0.027 

(0.01) 

0.603 

(0.065) 

2.56×108 

(0.58×108) 

–0.745 

(0.787) 

0.9998 8.4×1013 

Note:  SSE, sum of squared errors; values in parentheses represent standard errors. Estimation 
results are based on fitting the cumulative forms of the GDMR and GDMRX to cumulative sales 
data. 
 

These results show that both the GDMR and the GDMRX perform well on the iPod data with 

the GDMRX having a slight edge in terms of sum of squared errors (SSE). This is not surprising 

given that the GDMRX is a more flexible model than the GDMR.  

4.4. When Both Sales Data and Adoptions Data are Available 

Ideally, the benchmark models should be used in cases for which separate datasets for each 

component of sales is available. The Notebook Computer, PC, and iPad datasets we have used 

record only aggregate sales. As a result, we can fit only the summations of the three components 
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to the sales data. This treatment allows for greater flexibility, but could increase the risk of 

overfitting and result in the predicted trends diverging from the theoretically correct trends. 

Judging by the predicted and actual sales trend, the GDMR performs well on aggregate sales 

data; however, we are not able to assess whether the adoption trend predicted by the GDMR 

closely matches the true adoption trend. 

What if both adoption data and sales data are available? To answer this question, we compare 

the GDMR with the benchmark models using separate adoption data and sales data for DVD 

players in the U.S. from year 1997 to 2018. The adoption data from 1997 to 2007 is derived by 

multiplying the penetration of DVD in the U.S. households reported by the Consumer 

Technology Association (Uncommon Wisdom Daily 2015) by the population of households in 

the U.S. (Statista 2016). The corresponding sales data from 1997 to 2010 is reported by the 

Digital Entertainment Group (DEG) and from 2014 to 2018 is reported by Statista.7 

Our test using this data includes three steps. First, we fit the Bass Model to the 

noncumulative adoption data to estimate adoption parameters p, q, and m. Second, we treat the 

resulting adoption parameters as known and then fit the GDMR to the sales data to estimate the 

coefficient of repeat purchases β. We withhold five last sales data points (2014-2018) for 

evaluating the GDMR’s performance in forecasting sales. The parameter estimates for the Bass 

Model and the GDMR (only β is estimated by the GDMR with p, q, and m being estimated by 

the Bass Model and entered into the GDMR), as summarized in Table 6, are mostly significant. 

Third, a similar estimation procedure is repeated for the benchmark models.  

                                                 
7There is some inconsistency in the two sets of data in that adoption is reported to be slightly larger than sales from 
1998 to 2000 and that adoption is zero in 1997, whereas the corresponding sales is non-zero. The inconsistency, 
however, has a negligible impact on parameter estimation. Therefore, we choose to keep the entire sample period for 
parameter estimation. 
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Table 6. Parameter Estimates Based on DVD Player Adoptions and Sales (Two-Step 
Procedure) 

Model R2 SSE Parameter Estimate Standard 
error 

t-
statistics 

P-
value 

   p 0.003 0.002 1.3 0.23 

Bass  0.9246 1.0×1014 q 0.769 0.130 5.9 0.00 

   m 9.9×107 1.3×107 7.7 0.00 

GDMR 0.9923 6.6×1013 β 0.48 0.01 46.4 0.00 

Note:  SSE, sum of squared errors. 

The comparison of fits and forecasts obtained from the GDMR and the benchmark models is 

reported in Table 7 and depicted in Figure 9. From the table, it is clear that the GDMR 

outperforms the two benchmarks in terms of model fitting and forecasting. From the figure, we 

can see that, once again, the GDMR curve matches the actual sales trend better than do the 

benchmark models. The GDMR’s forecasting performance for 2014-2018 sales is also much 

better than those of benchmark models. Bass-KB-Steffens shows an unrealistic increase in sales 

after the decline. This can be attributed to the joint estimation of the replacement and multi-unit 

ownership models using only the total repeat purchases data, which may result in biased 

parameter estimates for the benchmark models. Steffens (2003) also reports problems when 

replacements and multi-unit ownerships are jointly estimated. 

 
Table 7. Comparison of GDMR and the Benchmarks Based on DVD Player Sales Data 

 GDMR Bass-KB-BHL Bass-KB-Steffens 

Fit R2 0.9923 0.8057 0.9652 

Fit MSE 4.7×1012 3.11×1013 5.6×1012 

Forecast MAPE 8.74 48.87 74.52 

Note: MSE – mean square error; MAPE – mean absolute percentage error. 
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Figure 9. GDMR and Benchmarks along with the Bass Diffusion Curve Based on DVD 

Players Adoption and Sales (1997–2018) 

Note that the parameter values summarized in Table 6 and model fitting shown in Figure 9 

are obtained by first fitting the Bass Model to the adoption data and subsequently the GDMR to 

the sales data. This two-step procedure is expected to produce more reliable adoption parameter 

(m, p, and q) values, but is unfortunately feasible only if the adoption data is available. In another 

test, we assume that, as in the previous cases, the adoption data is unavailable, and we fit the 

GDMR directly to the sales data from 1997 to 2010 to obtain both adoption and repeat-purchase 

parameter values. For convenience, we term this the GDMR-sales procedure. We summarize the 

result of sales procedure based on fitting the GDMR to sales data from 1997 to 2010 in Table 8. 

By comparing the adoption parameter estimates in Tables 6 and 8, it is evident that the values of 

these parameters are remarkably similar, showing that the GDMR can effectively recover the 

adoption trend from sales data. 

Table 8. Parameter Estimates Based on DVD Player Sales (GDMR-Sales Procedure) 

β p q M R2 SSE 

0.47 

(0.06) 

0.005 

(0.001) 

0.7 

(0.062) 

1.0×108 

(1.4×107) 

0.9967 2.8×1013 

Note:  SSE, sum of squared errors; values in parentheses represent standard errors. 
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The two-step procedure and the GDMR-sales procedure’s model fitting performances are 

shown in Figure 10. From the figure, the adoption trend and the sales trend produced by the two 

procedures are highly consistent, further demonstrating the power of the GDMR. 

 

Figure 10. Comparison of Model Fitting for DVD Players Adoptions and Sales (1997–2018) 

Furthermore, Figure 10 presents clear empirical evidence that repeat purchases can account 

for a growing proportion of total sales as a product continues to penetrate a market. Unless the 

repeat purchases are explicitly modeled, parameter estimates are likely to be biased, and 

forecasting performance could suffer. Therefore, a model such as the GDMR that incorporates 

repeat purchases should be adopted whenever repeat purchases are significant. 

Based on the DVD players dataset, we also estimate the two benchmark models using a 

procedure similar to the GDMR-sales procedure to examine how accurately the benchmark 

models can recover the underlying adoption trend. We first fit the benchmark models directly to 

the sales data to obtain all adoption and repeat-purchase parameter values. We then compare the 

adoption trend estimated by the benchmark models with the adoption trend estimated by directly 

fitting the Bass Model to the adoption data. Results for the estimated sale and the corresponding 

adoption estimated by the Bass-KB-BHL Model and the Bass-KB-Steffens Model are shown in 

Figures 11 and 12, respectively. We can observe that the adoption trends estimated by the two 
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benchmark models are considerably different from the adoption trend estimated by directly 

fitting the Bass Model to the adoption data. By comparing Figures 11 and 12 against Figure 10, 

we can see that, despite having fewer parameters, the GDMR performs better than the 

benchmark models in recovering the adoption trend based on the DVD player sales data. This 

offers a strong empirical evidence that the GDMR can more reliably separate adoptions from 

repeat purchases than the benchmark models do. 

 

Figure 11. Sales Components Estimated by the Bass-KB-BHL Model 

 

Figure 12. Sales Components Estimated by the Bass-KB-Steffens Model 
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Anchor I – 1 

 

Anchor II – 1 

 

Anchor III – 1 

 

Figure 13. GDMR’s Fit on Sales and Adoptions Based on Simulated Data 

Ideally, we should evaluate the GDMR’s capability in recovering adoption trend from sales 

data using more than one real dataset. In reality, however, it is extremely rare to have both 

adoption and sales data available for the same product. Therefore, we conduct extensive 

simulations to generate adoption and sales data for a wide variety of products. We subsequently 

repeat the aforementioned GDMR-sales procedure using the simulated data. Details about the 

simulation and the additional empirical analysis are provided in Appendix D. For the purpose of 

illustration, we select three representative cases and show them in Figure 13. The results again 

show that the GDMR is able to reliably separate repeat purchases from adoptions even when 

only aggregate sales data is used, thus further establishing the validity of the GDMR. 

5. Conclusions and Discussions 

This study aims to develop a generalized diffusion model to capture sales of a product with 

repeat purchases. By treating the sales process as an economic process with memory, we are able 
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to utilize a branch of mathematics called fractional calculus, and develop a novel diffusion/sales 

model, the Generalized Diffusion Model with Repeat Purchases (GDMR), to account for repeat 

purchases that have become increasingly prevalent in today’s markets. The GDMR generalizes 

the classic Bass Model using an integral operator with fractional order, and produces sales 

growth curves that stays above the adoption trend.  

By assigning different values to the newly introduced parameter named coefficient of repeat 

purchases, which determines the value of the memory function that controls the rate of repeat 

purchases, the proposed GDMR can cover a wide continuum of sales growth scenarios ranging 

from symmetrical bell-shaped sales curves to S-shaped sales curves. This represents sales for a 

wide variety of products ranging from perfectly durable goods that are not subject to 

obsolescence and offer no incentive for repeat purchases, to products that have a short lifetime, 

multiple versions, or a high chance of becoming obsolete as a result of frequent releases of 

product upgrades.  

Theoretically, the GDMR has several important advantages over alternative models. By 

clearly differentiating adoptions from subsequent repeat purchases, the GDMR overcomes the 

parameter estimation bias resulting from force-fitting the adoptions-only Bass Model to sales 

data that is typically “contaminated” by repeat purchases. Reducing the bias in parameter 

estimation can lead to better understanding of the product diffusion process and more accurate 

prediction of future sales.  

As opposed to the models in the extant literature, the GDMR accounts for the decline in the 

rate of repeat purchases due to users’ falling interest in the product over time and departures to 

new products. In addition, the GDMR does not exclude either replacements or multi-unit 

ownership purchases; therefore, it has broader applications compared to models that incorporate 
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only one of these two sales components. The GDMR remains a parsimonious model, as it 

incorporates repeat purchases by adding only one parameter to the Bass Model. Furthermore, the 

GDMR can incorporate marketing mix variables such as pricing and advertising, thus making it 

more useful in helping businesses make better marketing and promotion decisions.  

Empirically, we show that the GDMR is easy to implement and delivers superior 

performance when (a) only aggregate sales data is available, (b) data for marketing mix variables 

is available, and (c) data for adoption and sales are both available. In particular, the demonstrated 

consistent performance based solely on aggregate sales data is a quality unseen from other 

models proposed in the literature, and one that is of utmost importance as separate data for 

distinct sales components is rarely available. In addition, we find that the GDMR can effectively 

recover adoption trends when only sales data is available. Such robust performances validate that 

GDMR is a great choice in helping understand and predict product adoptions and sales trends for 

a long time frame. 

We would also like to point out that the GDMR’s contribution is not limited to the diffusion 

of innovations literature. By accounting for repeat purchases using a fractional integral of the 

adoptions trend, the GDMR presents a new interpretation of fractional integral, thereby 

contributing to the broad literature of fractional calculus in applied mathematics and science. It is 

very well known that integer-order integrals and derivatives have simple and clear geometric and 

physical interpretations, thus guiding numerous applications of these tools in science (Podlubny 

2002). Interpreting fractional integrals and derivatives, however, has proven challenging. For 

more than 300 years since the introduction of fractional calculus, no clear geometric and physical 

interpretation of fractional derivatives and integrals has been introduced (Podlubny 2002). In the 

first international conference on fractional calculus held in New Haven (USA) in the year 1974, 
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discovering the physical and geometric interpretations of fractional calculus was included in the 

list of open problems (Ross 1975). Only in more recent years, different interpretations of 

fractional calculus have emerged, including the economic interpretation proposed by Tarasova 

and Tarasov (2017). By proposing an interpretation of fractional integral in the context of 

product adoptions and repeat purchases, the present research represents the newest contribution 

to the cross-disciplinary endeavor of interpreting fractional calculus. 

The present research, the fractional calculus-based model extension in particular, lays a 

foundation for future work in the diffusion of innovation domain. For instance, multigeneration 

diffusion models (e.g., Norton and Bass 1987, Jiang and Jain 2012) could be used as the base for 

the type of extension presented in this paper. In addition, the modeling approach implemented in 

this study, utilizing a spectrum of functions that run between a probability density function and 

its corresponding cumulative distribution function to capture the variations of a phenomenon of 

interest, is worth further examination. This approach may find more applications in other 

branches of business and economics research. 
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Appendix A: Characteristics of the GDMR 

In this Appendix, we mathematically demonstrate the following characteristics of the GDMR. 

(i) The Reimann-Liouville fractional integral used in the formulation for the GDMR defines 

sales as a process with memory of adoptions. Adoptions from the past that are 

remembered at the current time result in repeat purchases at the current time. 

(ii) The memory function used in the formulation for the Reimann-Liouville fractional 

integral (used in the GDMR) is a fading memory or power-law memory, meaning that it 

remembers the more recent adoptions better than the older ones. This means that based 

on the fading or power-law memory, those who have made their adoptions more recently 

are more prone to making repeat purchases at the current time. 

(iii) lower 𝛽s correspond to lower memories of the process, meaning that under lower 𝛽s, 

adopters are less prone to making repeat purchases. 

To demonstrate the abovementioned three characteristics of the GDMR, we view sales as 

an economic process with a memory of adoptions. In its general form, an economic process with 

memory can be shown as:  

𝑌(𝑡) = ∫ 𝑀(𝑡, 𝜏)𝑋(𝜏)𝑑𝜏
௧


,                                                  (A1)                                        

in which 𝑌(𝑡) is an endogenous variable (sales in the GDMR) associated with the exogenous 

variable 𝑋(𝜏) (adoptions in the GDMR) based on a linear Volterra operator (Tarasova and 

Tarasov 2018). The Volterra operator in Eq. (A1) is: 

(. ) = ∫ 𝑀(𝑡, 𝜏)(. )𝑑𝜏
௧


,                                                    (A2)                                           

where 𝑀(𝑡, 𝜏) is a function called the memory function (Tarasova and Tarasov 2018). To 

describe the memory property of the operator shown in Eq. (A2) consider the following 

exogenous variable 𝑋(𝜏): 
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                                                         𝑋(𝜏) = ൜
𝑥(𝜏)       0 ≤ 𝜏 ≤ 𝑇,
0             𝜏 > 𝑇,          

 

where 𝑥(𝜏) > 0, 𝑥(𝜏) is continuous on [0, 𝑇], and 0 < 𝑇 < 𝑡. Then we get: 

𝑌(𝑡) = ∫ 𝑀(𝑡, 𝜏)𝑋(𝜏)𝑑𝜏
௧


= ∫ 𝑀(𝑡, 𝜏)𝑥(𝜏)𝑑𝜏

்


.                                 (A3)                                  

Eq. (A3) shows that even though for 𝑡 > 𝑇 the exogenous variable 𝑋(𝜏) is equal to zero, the 

endogenous variable 𝑌(𝑡) is nonzero (Tarasova and Tarasov 2018). This means that a memory of 

𝑋(𝜏), 𝜏 ∈ [0, 𝑇], is stored in the process and present in 𝑌(𝑡). This shows (i). 

Now suppose for each 𝑡, the memory function 𝑀(𝑡, 𝜏) is continuous on [0, 𝑇]. According to 

mean value theorem for integrals (Apostol, 1979, p. 154), we can conclude that for each 𝑡 > 𝑇 

there exists 𝑘௧𝜖[0, 𝑇] such that: 

𝑌(𝑡) = 𝑀(𝑡, 𝑘௧)𝑋(𝑘௧)𝑇.                                                  (A4)                                            

Now suppose lim
௧→ஶ

𝑀(𝑡, 𝜏) = 0 uniformly for 𝜏ϵ[0, 𝑇], 𝑡 > 𝑇. Because for each 𝑡 > 𝑇,  𝑘௧ϵ[0, 𝑇], 

we have lim
௧→ஶ

𝑀(𝑡, 𝑘௧) = 0. On the other hand, because 𝑋(𝜏) is continuous on [0, 𝑇] and 

𝑘௧𝜖[0, 𝑇] for any 𝑡 > 𝑇, we can conclude that there exists an 𝐿 > 0 such that 𝑋(𝑘௧) < 𝐿 for  

any 𝑡 > 𝑇. Now by Eq. (A4) we have: 

                                                          |𝑌(𝑡)| ≤ |𝑀(𝑡, 𝑘௧)| ∗ 𝐿 ∗ 𝑇, 

which indicates that lim
௧→ஶ

𝑌(𝑡) = 0. In this case, we can clearly observe that the effect of memory 

fades over time which means that the economic process shown in Eq. (A1) forgets the 𝑋(𝜏), 

𝜏ϵ[0, 𝑇], over time. This demonstrates (ii). 

In the GDMR shown in Eq. (10) in which 𝑀(𝑡, 𝜏) =
(௧ିఛ)ഁషభ

(ఉ)
,  for 𝑡 > 𝑇: 

𝑀(𝑡, 𝑘௧) =
(௧ି)ഁషభ

(ఉ)
<

ଵ

(௧ି்)భషഁ(ఉ)
,                                       (A5)                                                  
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which means lim
௧→ஶ

𝑀(𝑡, 𝑘௧) = 0 and we have a fading memory. It is clear that in the case of 𝛽 =

1, 𝑀(𝑡, 𝜏) = 1 and memory is not fading. By Eq. (A5) we can also observe that when 𝛽 tends to 

zero the upper bound in Eq. (A5) tends to zero which means the economic process will have a 

lower memory of the past. This demonstrates (iii).  
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Appendix B: Proofs 

We start with a number of theorems and definitions before introducing a substitute operator. 

After introducing the new operator, by showing that the proposed operator, 𝐼,
ఉ , converges to 𝐼ఉ 

with respect to the operator norm, we demonstrate that 𝐼,
ఉ  has the same properties as those of 

𝐼ఉ. 

Theorem B1. On C[0, T], the Riemann-Liouville fractional integration operator has the 

semigroup property 

 𝐼ఋ . 𝐼ఒ(. ) = 𝐼ఋାఒ(. ).                                                         (B1) 

Here C[0, T] denotes the space of all continuous functions on the interval [0, 𝑇] (Kilbas, 

Srivastave, and Trujillo. 2006). 

Applying the semigroup property (B1) of fractional integral operator we have 

                                     𝐼ఉ𝑦(𝑡) = 𝐼ఉ[𝑦(0) + 𝐼𝑦ᇱ(0) + 𝐼ଶ𝑦ᇱᇱ(𝑡)]                                       (B2)                          

= 𝐼ఉ𝑦(0) + 𝐼ଵାఉ𝑦ᇱ(0) + 𝐼ଶାఉ𝑦ᇱᇱ(𝑡) 

=
𝑦(0)𝑡ఉ

𝛤(1 + 𝛽)
+

𝑦ᇱ(0)𝑡ଵାఉ

𝛤(2 + 𝛽)
+ 𝐼ଶାఉ𝑦ᇱᇱ(𝑡). 

We approximate operator 𝐼ఉ by applying the well-known n-point Gauss quadrature formula for 

integrals (DeVore and Scott 1984) and Spouge’s approximate formula for the Gamma function 

(Spouge 1994). We first state Spouge’s formula in the following theorem. 

Theorem B2 (Spouge’s approximation for the gamma function). For 𝑥 ∈ ℝ, 𝑥 ≥ 1, the 

gamma function can be approximated as follows (Spouge 1994): 

 𝛤(𝑥) ≅ (𝑥 − 1 + ℎ)௫ି
భ

మ𝑒ି(௫ିଵା)√2𝜋 ቂ𝑐 + ∑
()

௫ିଵା


ୀଵ ቃ. (B3) 

The parameter ℎ is real, 𝑘 = ⌈ℎ⌉ − 1, 𝑐 = 1, and  
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 𝑐(ℎ) =
(ିଵ)షభ(ିା)ష

భ
మ

√ଶగ(ିଵ)!
𝑒ିା. (B4) 

There exists the error upper bound 
௰(௫)

(ଶగ)శ
భ
మ√

 for approximate formula (B3), provided that ℎ ≥ 3. 

Now set 

 𝐺(𝑥) = (𝑥 − 1 + ℎ)௫ି
భ

మ𝑒ି(௫ିଵା)√2𝜋 ቂ𝑐 + ∑
()

௫ିଵା


ୀଵ ቃ (B5) 

Applying the Gauss quadrature formula along with Eq. (A5) we approximate the operator 𝐼ଶାఉ 

by operator 𝐼,
ଶାఉ as follows: 

 𝐼,
ଶାఉ

𝑦ᇱᇱ(𝑡) ∶=
ଵ

ீೖ(ଶାఉ)

௧

ଶ
∑ 𝑤 ቀ

௧

ଶ
(1 − 𝑥)ቁ

ଵାఉ

𝑦ᇱᇱ ቀ
௧

ଶ
(𝑥 + 1)ቁ .

ୀଵ  (B6) 

In the above formula, 𝑤and 𝑥 denote the quadrature nodes and weights (DeVore and Scott 

1984). We consider the following operator, 𝐼,
ఉ , instead of the operator 𝐼ఉ given in Eq. (B2)  

 𝐼,
ఉ

𝑦(𝑡) ∶=
௬()௧ഁ

ீೖ(ଵାఉ)
+

௬ᇲ()௧భశഁ

ீೖ(ଶାఉ)
+ 𝐼,

ଶାఉ
𝑦ᇱᇱ(𝑡). (B7) 

We have substituted the operator 𝐼ఉ with the computationally implementable operator 𝐼,
ఉ . Now 

we need to demonstrate that 𝐼,
ఉ  maintains the desired characteristics of 𝐼ఉ. Specifically, we will 

show that, for large enough values of 𝑘 and 𝑛, operator 𝐼,
ఉ  tends to the fractional integration 

operator 𝐼ఉ. We start with some definitions and theorems from functional analysis (Kreyszig 

1978), which play a pivotal role in this argument. 

The normed space (𝐶ଷ[0, 𝑇], ‖. ‖ଷ) is defined as follows: 

𝐶ଷ[0, 𝑇] = ൛𝑓(𝑡)| 𝑓(ଷ)(𝑡) ∈ 𝐶[0, 𝑇]ൟ,                                            (B8)                                         

                                     ‖𝑓‖ଷ = ‖𝑓‖ஶ + ‖𝑓′‖ஶ + ‖𝑓′′‖ஶ + ‖𝑓′′′‖ஶ, 

where C[0, T] denotes the space of continuous functions on the interval [0, T] equipped with the 

uniform norm, 
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 ‖𝑓‖ஶ = sup{|𝑓(𝑡)|| 𝑡 ∈ [0, 𝑇]} (B9) 

Definition B1 (Bounded linear operator).  Let  𝐿: 𝐶ଷ[0, 𝑇] → 𝐶[0, 𝑇] be a linear operator. The 

operator 𝐿 is said to be bounded if there exists a real number 𝑐 in such a way that for all  𝑓 ∈

 𝐶ସ[0, 𝑇] , 

‖𝐿(𝑓)‖ஶ ≤ 𝑐‖𝑓‖ଷ. 

Definition B2 (Operator Norm).  Let 𝐿 be a bounded linear operator as defined in definition 

A1. ‖𝐿‖ is called the norm of the operator 𝐿 and is defined as 

‖𝐿‖ = inf{𝑐 ∶ ‖𝐿(𝑓)‖ஶ ≤ 𝑐‖𝑓‖ଷ, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑓 ∈ 𝐶ଷ[0, 𝑇] }. 

Theorem B3 presents an error upper bound for the Gauss quadrature formula. 

Theorem B3.  Let 𝐸(𝑓) denote the error in n-point Gaussian quadrature applied to function 𝑓 

on the interval [0, 𝑡],  0 < 𝑡 ≤ 𝑇. If  𝑓′ ∈ 𝐶[0, 𝑇], then 

|𝐸(𝑓)| ≤
3𝜋𝑡

𝑛
න |𝑓ᇱ(𝑠)|ඨ1 − (

2

𝑡
𝑠 − 1)ଶ𝑑𝑠.

௧



 

Proof. (DeVore and Scott 1984) 

Theorem B4. Consider 𝐼,
ఉ

, 𝐼ఉ: 𝐶ଷ[0, 𝑇] → 𝐶[0, 𝑇], then as the values of 𝑘 𝑎𝑛𝑑 𝑛 increase, 

ቛ𝐼,
ఉ

− 𝐼ఉቛ converges to zero. 

Proof.   

According to Theorem B2, 

 |𝛤(𝜔) − 𝐺(𝜔)| <
௰(ఠ)

(ଶగ)శ
భ
మ√

, (B10) 

where 𝜔 ≥ 1, 𝑘 = ⌈ℎ⌉ − 1. According to inequality (B10), we can set 𝑘 large enough so that, 

|𝛤(𝜔) − 𝐺(𝜔)| <
ଵ

ଶ
𝛤(𝜔). 

Hence, we get 𝐺(𝜔) >
ଵ

ଶ
𝛤(𝜔); therefore, 
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ଵ

ீೖ(ఠ)
<

ଶ

௰(ఠ)
. (B11) 

Hence, from (B10) and (B11), we have 

 ቚ
ଵ

௰(ఠ)
−

ଵ

ீೖ(ఠ)
ቚ ≤

ଶ|௰(ఠ)ିீೖ(ఠ)|

௰(ఠ)మ
<

ଶ

(ଶగ)శ
భ
మ√௰(ఠ)

. (B12) 

Let  𝑓 ∈  𝐶ଷ[0, 𝑇]. From Theorem B3, we get 
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Referring to (B2) and (B7), applying (B11), (B12), and (B13) we get 
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According to Definition A2, we observe that,  
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Now it is easy to observe that as 𝑘 and 𝑛 increase, then ቛ𝐼,
ఉ

− 𝐼ఉቛ converges to zero, thus 

proving the lemma. ∎ 
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Appendix C: Additional Model Flexibility 

The base GDMR can be further extended to allow for more model flexibility. For instance, under 

the periodic-repeat-purchases scenario (𝛽 = 1), sales grow at the same rate as does that of the 

corresponding cumulative adoptions, essentially assuming that adopters from the previous 

periods, on average, make one repeat purchase in each subsequent unit time period. However, 

there may exist scenarios in which the average frequency of repeat purchases is either higher or 

lower than 1. To incorporate such scenarios, we can introduce one more parameter, h, into the 

model:  

 𝑆(𝑡) = ℎఉ ∗ 𝐼ఉ𝑦(𝑡). (C1) 

Incorporating the new parameter h into Eq. (6), we have: 

𝑆(𝑡) = ℎఉ ∗ 𝐼ఉ𝑦(𝑡) = ∫ ℎఉ ଵ

(ఉ)
(𝑡 − 𝜏)(ఉିଵ) 𝑦(𝜏)𝑑𝜏,

௧


                            (C2)                               

where ℎఉ ଵ

(ఉ)
(𝑡 − 𝜏)(ఉିଵ) represents the extended memory function with higher flexibility than 

the one shown in Eq. (6) (i.e., ቂ
ଵ

(ఉ)
(𝑡 − 𝜏)(ఉିଵ)ቃ).  

The new parameter h in Eq. (C1) or (C2) has the effect of “raising” (h > 1) or “lowering” (0 

< h <1) the sales curve along the vertical dimension. For instance, when 𝛽 = 1, for h > 1, 

adopters on average make more than one repeat purchase in each time-period, and for 0 < h <1, 

adopters on average make less than one repeat purchase in each time-period. We would like to 

point out, however, that the additional parameter should not be included unless it leads to clear 

improvement in model fitting or prediction. 

  



52 

Appendix D: Model Evaluation Based on Simulation 

One of the most important characteristics of the Generalized Diffusion Model with Repeat 

Purchases (GDMR) is that it can be directly fit to aggregate sales data without knowing the 

percentages of adoptions (i.e., first-time purchases) and repeat purchases in sales. This is a very 

critical advantage because the vast majority of sales datasets available to researchers and 

analysts, including those used in the prior literature to test diffusion models, are aggregate sales 

data — it is much easier for firms to keep track of sales than adoptions and repeat purchases. 

Once the model parameter values are obtained from sales data based on the GDMR, it is 

straightforward to estimate the amount of adoptions and repeat purchases. To empirically 

evaluate how reliably the GDMR separates adoptions from repeat purchases, however, we need 

to have both sales data and adoption data. Unfortunately, in practice, most businesses are 

primarily interested in total sales, and have limited insensitive or resources to collect separate 

data on adoptions and repeat purchases. As a result, sales data that includes the breakdown of 

adoptions and repeat purchase are very difficult to obtain. For this reason, we conduct 

simulations to generate sales and adoption data, which are subsequently used to evaluate the 

GDMR’s performance, particularly in recovering adoption trend from sales data, and in linking 

the amount of repeat purchases to the coefficient of repeat purchases (𝛽).  

Simulation Procedure 

Consistent with the motivation of the GDMR in the paper, in our simulation, product sales are 

generated through adoptions and repeat purchases (including both replacement and multi-unit 

ownership purchases). In addition, to be consistent with reality (newer and better products will 

eventually emerge and buyers will jump ship) and trends observed from real data (even with 
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repeat purchases, sales drop after some period of time for all products), we also simulate buyers’ 

departures from a focal product. We next describe each of the components in detail. 

Adoptions. We simulate a population of 1000 potential adopters (n=1000). We generate the time 

to adoption for each adopter by calling a random number generator based on the distribution 

suggested by the Bass Model (Bass 1969), because it is the most widely applied diffusion model 

and hence the golden standard. We repeat the procedure 1000 times to generate the time of 

adoption for all simulated adopters.  

Multi-unit Ownership Purchases. We simulate only second-unit purchases because we believe 

that they are sufficient to capture the essence of the multi-unit ownership phenomenon, and for 

many products, a small percentage of users own more than two units of the product. We select a 

random subset of adopters who proceed to purchase a second unit. Following Steffens (2003), we 

treat these purchases as adoptions, second adoptions to be specific, and assume that the time-to-

second-adoptions also follows the distribution suggested by the Bass Model.  

Replacement Purchases. Following Kamakura and Balasubramanian (1987), we assume that 

product replacements follow an h distribution. In the two-unit-ownership cases, we assume that 

the replacement of the first unit occurs independently of the replacement of the second unit. 

Furthermore, the time to replacement for each adoption is independently and identically 

distributed. We generate the time-to-replacements for each adoption based on the h distribution. 

A replacement can be replaced again as time goes by. The time of occurrence of the nth 

replacement is the summation of the times-to-replacement for the first n replacements. 

Departures. Departures take place as a result of users switching to an alternative product. 

Therefore, we simulate departures using a Bass diffusion process. We randomly select a subset 

of users who depart. The essence of a departure is that replacements will no longer be generated 
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after the departure. In the case of two-unit-ownerships, the departures of the first and second 

adoptions are independent, implying that a user who owns two units may decide to stop replacing 

one unit while keep replacing the other. In our simulation, departures start sometime after the 

focal product’s first adoption, implying that the competing product does not emerge immediately 

after the launch of the focal product. 

Parameter Value Selection 

Because of the number of parameters needed for our simulation, a random combination of 

parameter values could lead to unrealistic scenarios. To construct realistic simulation scenarios, 

we first simulate an anchor scenario based on the available DVD players dataset that records 

both product adoptions and sales. We label this scenario as Anchor I. We subsequently generate 

two more anchor scenarios by shrinking and extending the adoption time-frame of the Anchor I, 

to accommodate products with faster and slower adoption processes than DVD players. They are 

named Anchor II (shorter time frame), and Anchor III (longer time frame), respectively.  

To simulate a wider variety of product categories and market conditions, for each of the three 

anchor scenarios, we alter its sales components to generate more scenarios. Specifically, we 

change the following parameters one at a time: (1) the percentage of adopters who adopt a 

second unit, (2) the average service life of the product, (3) the percentage of adopters who 

depart, (4) the departure start time, and (5) the ratios of coefficient of innovation to coefficient of 

imitation for first adoptions, second adoptions, and departures.  

We next describe how the Anchor I scenario is generated based on the DVD players dataset. We 

use the coefficient of innovation (p) and the coefficient of imitation (q) derived from fitting the 

Bass Model to the DVD players adoption data. We assume that 50% of the adopters adopted a 

second unit, because records show that more than 50% percent of the US households owned 



55 

more than three TV sets (News Wire 2009), and if at least two of these TV sets were equipped 

with a DVD player, we can conclude that at least 50% of the DVD users adopted a second unit. 

In addition, because second-unit adopters already had their own experience with the product and 

were less influenced by other adopters, we assume that second adoptions are more likely to be 

driven by independent decision making. Therefore, we use a higher coefficient of innovation for 

second adoptions than that for first adoptions. Regarding replacement purchases, based on 

reported records (Consumer Technology Association 2014), we assume that the simulated 

product’s average service life is 5 years. The h distribution we implement for product 

replacement has a shape parameter that reflects the relationship between maximum product 

service life and average product service life. Following Kamakura and Balasubramanian (1987), 

we set h = 1.75, meaning that the maximum service life is three times as long as the average 

service life. Our empirical tests show that the results are not highly sensitive to the value of this 

shape parameter. In the DVD player case, the emergence of the alternative (i.e., Blu-Ray) and 

subsequently the departure of users started nine years after the release of the DVD technology 

and when the product adoption was 90% complete. We set the departure start time for our first 

anchor scenario in the same manner. Because Blu-Ray players and DVD players are similar 

products, we further assume that the coefficient of innovation and the coefficient of imitation for 

the departure process are similar to those of the focal product’s adoption process. The last 

parameter we need to determine is the percentage of departing adoptions. We select this 

percentage in a way such that fitting the GDMR to the simulated sales data results in a repeat 

purchases parameter value close to what we get from fitting the GDMR to the real DVD players 

dataset — we select the percentage of departures to be 70%. 
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As explained earlier, Anchor II and Anchor III scenarios are generated by shrinking and 

extending the adoption time-frame of the Anchor I scenario generated using the DVD players 

dataset. The shrinkage and extension of the adoption time frame are done by altering the 

coefficient of imitation. Specifically, in the DVD players case, 99% of adoptions were completed 

in 13 years. In the Anchor II scenario, 99% of adoptions are completed in 10 years. In the 

Anchor III scenario, 99% of adopters are completed in 16 years. Similar to the Anchor I 

scenario, in the Anchor II and Anchor III scenarios, we assume that the coefficient of innovation 

for second adoption is larger than that for the first adoption. For the Anchor I scenario, 

departures start to occur when first adoptions are 90% complete. The departure times for the 

other two anchor scenarios are set in a similar manner.  

As explained earlier, for each of the three anchor scenarios developed, we change the values of 

five types of parameters one at a time. (1) the percentage of second adoptions, (2) the 

replacement cycles, (3) the departure start time, (4) the percentage of departures, and (5) the 

ratios of coefficient of innovation to coefficient of imitation in the first adoptions, second 

adoptions, and departures. We next provide additional details regarding how the values of these 

parameters are set. 

(1) Percentage of second adoptions. In addition to the default 50%, we also consider 30% and 

10% of second adoptions.  

(2) Average service life of the product. In addition to the default average service life of 5 years, 

we also consider 4, 7, and 9 years of average service life.  

(3) Departure start time. In the three anchor scenarios, the emergence of alternative products and 

departures of the users for the alternatives start when the product adoption is 90% complete. For 

variation scenarios, we consider earlier user departure start times for the three anchor scenarios. 
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For Anchor I, adoption peaks at around t=7.7, and we let departures start at t=7. For Anchor II, 

adoptions peak at t=6.2, and we let departures start at t=6. For Anchor III, adoptions peak at 

t=9.3, and we consider two earlier departure start times at t=9 and t=10, respectively.  

4) Percentage of adopters who depart. For the three anchor scenarios, in addition to the default 

70%, we also consider 50% and 90% of departures.  

(5) Ratio of coefficient of innovation to coefficient of imitation. For the three anchor scenarios, 

we also consider scenarios with a high coefficient of innovation for first adoptions, up to twenty 

times as large as the coefficient of innovation estimated from the DVD players adoption data.  

Altogether, the procedures descried above generate 31 scenarios. We report the parameter values 

for these 31 scenarios in Tables A1 to A3. 

Table A1. Parameter Values for Anchor I and Corresponding Variation Scenarios 

  
Adoption 

Repeat Purchases  
Departure Second 

Adoption 
Replace

ment 
 p1 q1 p2 q2 m2 l h pd qd md t* 

Anchor I– 1 
 

0.003 0.77 1.2 1 0.5 5 1.75 0.003 0.77 0.7 9 

Changing Average 
Service Life 

           

Anchor I – 2 0.003 0.77 1.2 1 0.5 4 1.75 0.003 0.77 0.7 9 
Anchor I – 3 0.003 0.77 1.2 1 0.5 7 1.75 0.003 0.77 0.7 9 
Anchor I – 4 0.003 0.77 1.2 1 0.5 9 1.75 0.003 0.77 0.7 9 

Changing Second 
Adoption Percent 

           

Anchor I – 5 0.003 0.77 1.2 1 0.3 5 1.75 0.003 0.77 0.7 9 
Anchor I – 6 0.003 0.77 1.2 1 0.1 5 1.75 0.003 0.77 0.7 9 

Changing the 
Departure Start 
Time 

           

Anchor I – 7 0.003 0.77 1.2 1 0.5 5 1.75 0.003 0.77 0.7 7 
Changing 
Departure 
Percentage 

           

Anchor I – 8 0.003 0.77 1.2 1 0.5 5 1.75 0.003 0.77 0.5 9 
Anchor I – 9 0.003 0.77 1.2 1 0.5 5 1.75 0.003 0.77 0.9 9 

Changing Adoption 
Parameters 
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Anchor I – 10 0.06 0.5 1.5 1.3 0.5 5 1.75 0.06 0.5 0.7 6.5 
 

Table A2. Parameter Values for Anchor II and Corresponding Variation Scenarios 

  
Adoption 

Repeat Purchases  
Departure Second Adoption Replace

ment 
 p1 q1 p2 q2 m2 l h pd qd md t* 

Anchor II – 1 
 

0.003 1 1.4 1.2 0.5 5 1.75 0.003 1 0.7 7.2 

Change Average 
service Life 

           

Anchor II – 2 0.003 1 1.4 1.2 0.5 4 1.75 0.003 0.77 0.7 7.2 
Anchor II – 3 0.003 1 1.4 1.2 0.5 7 1.75 0.003 0.77 0.7 7.2 
Anchor II – 4 0.003 1 1.4 1.2 0.5 9 1.75 0.003 0.77 0.7 7.2 

Changing Second 
Adoption Percent 

           

Anchor II – 5 0.003 1 1.4 1.2 0.3 5 1.75 0.003 0.77 0.7 7.2 
Anchor II – 6 0.003 1 1.4 1.2 0.1 5 1.75 0.003 0.77 0.7 7.2 

Changing the 
Departure Start 
Time 

           

Anchor II – 7 0.003 1 1.4 1.2 0.5 5 1.75 0.003 0.77 0.7 6 
Changing 
Departure 
percentage 

           

Anchor II – 8 0.003 1 1.4 1.2 0.5 5 1.75 0.003 0.77 0.5 7.2 
Anchor II – 9 0.003 1 1.4 1.2 0.5 5 1.75 0.003 0.77 0.9 7.2 

Changing 
Adoption 
Parameters 

           

Anchor II – 10 0.06 0.65 1.6 1.4 0.5 5 1.75 0.06 0.65 0.7 5.5 
 

Table A3. Parameter Values for Anchor III and Corresponding Variation Scenarios 

  
Adoption 

Repeat Purchases  
Departure Second Adoption Replace

ment 
 p1 q1 p2 q2 m2 l h pd qd md t* 

Anchor III– 1 
 

0.003 0.6 1 0.8 0.5 5 1.75 0.00
3 

0.6 0.7 11.1 

Change Average 
service Life 

           

Anchor III – 2 0.003 0.6 1 0.8 0.5 4 1.75 0.00
3 

0.6 0.7 11.1 

Anchor III – 3 0.003 0.6 1 0.8 0.5 7 1.75 0.00
3 

0.6 0.7 11.1 
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Anchor III – 4 0.003 0.6 1 0.8 0.5 9 1.75 0.00
3 

0.6 0.7 11.1 

Changing Second 
Adoption Percent 

           

Anchor III – 5 0.003 0.6 1 0.8 0.3 5 1.75 0.00
3 

0.6 0.7 11.1 

Anchor III – 6 0.003 0.6 1 0.8 0.1 5 1.75 0.00
3 

0.6 0.7 11.1 

Changing the 
Departure Start 
Time 

           

Anchor III – 7 0.003 0.6 1 0.8 0.5 5 1.75 0.00
3 

0.6 0.7 10 

Anchor III – 8 0.003 0.6 1 0.8 0.5 5 1.75 0.00
3 

0.6 0.7 9 

Changing 
Departure 
percentage 

           

Anchor III – 9 0.003 0.6 1 0.8 0.5 5 1.75 0.00
3 

0.6 0.5 11.1 

Anchor III– 10 0.003 0.6 1 0.8 0.5 5 1.75 0.00
3 

0.6 0.9 11.1 

Changing 
Adoption 
Parameters 

           

Anchor III – 11 0.06 0.4 1.4 1.2 0.5 5 1.75 0.06 0.4 0.7 7.5 
 

Results of Performance Evaluation 

To evaluate model performance, we first fit the GDMR to the simulated aggregate sales data, and 

then use the resulting adoption parameters (p, q, and m) to estimate the adoption trends. In 

addition, we evaluate the model’s three-years-ahead sales forecasting performance by 

withholding three last sales data points, fitting the GDMR to the remaining sales data points, and 

finally using the three withheld sales data points to measure the forecasting performance of the 

GDMR.  

The parameter estimates, model fit (both sales and adoptions) performance in terms of mean 

absolute percentage error (MAPE), and forecasting performance in terms of MAPE, for the three 

anchor scenarios and their variations are summarized in Tables A4 to Table A6. From these 
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results, we can see that all parameter estimates are significant for all scenarios. Most of the 

model fit and forecasting measured in MAPE are also quite reasonable. 

To better asses the GDMR’s performances, we create Figures A1 to A3 to show the GDMR’s fit 

to sales and adoptions. With a few exceptions, the estimates by the GDMR are also close to the 

simulated sales and adoption data. This demonstrates that the GDMR can retrieve adoption trend 

from sales trend with high accuracy. We would like to note, however, that the adoption trends 

estimated by the GDMR for the first and second anchor scenarios and their corresponding 

variations are more accurate than those estimated for the third anchor scenario and its variations. 

This suggests that the GDMR performs better in cases where adoption takes place in a relatively 

shorter time frame, which is likely to be true in today’s fast-paced technology product markets. 

Collectively, these empirical results give us confidence that the GDMR can reliably estimate 

sales and recover adoption trends from sales data for a wide range of product categories, 

especially those with average or relatively faster speed of market penetration. 

Table A4. Model Estimation and Forecasting Performance for Anchor I and Variation 
Scenarios 

 Parameters Estimates  Model Fit 
(MAPE) 

Three-Years-
Ahead 

Sales Forecast 
(MAPE) 

 
 β p q m Adoption Sales  

Anchor I– 1 0.44 
(***) 

0.003 
(***) 

0.67 
(***) 

1018.9 
(***) 

42.0 22.7 20.1 

Changing Average 
Service Life 

       

Anchor I – 2 0.47 
(***) 

0.002 
(***) 

0.75 
(***) 

900.8 
(***) 

24.0 14.2 13.3 

Anchor I – 3 0.4 
(***) 

0.002 
(***) 

0.76 
(***) 

904.7 
(***) 

21.8 12.33 9.6 

Anchor I – 4 0.34 
(***) 

0.001 
(***) 

0.84 
(***) 

899.4 
(***) 

18.5 10.2 11.36 

Changing Second 
Adoption Percent 
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Anchor I – 5 0.4 
(***) 

0.003 
(***) 

0.64 
(***) 

1002 
(***) 

52.6 23.1 18.4 

Anchor I – 6 0.62 
(***) 

0.004 
(***) 

0.6 
(***) 

918 
(***) 

64.1 33.2 37.1 

Changing the 
Departure Start 
Time 

       

Anchor I – 7 0.41 
(***) 

0.002 
(***) 

0.71 
(***) 

1040.2 
(***) 

39.3 15.1 8.0 

Changing 
Departure 
Percentage 

       

Anchor I – 8 0.59 
(***) 

0.001 
(*) 

0.92 
(***) 

686 
(***) 

39.3 11.4 4.5 

Anchor I – 9 0.67 
(***) 

0.004 
(*) 

0.61 
(***) 

1283.0 
(***) 

178.9 32.3 44.9 

Changing Adoption 
Parameters 

       

Anchor I – 10 0.42 
(***) 

0.044 
(***) 

0.49 
(***) 

993.6 
(***) 

8.0 6.9 17.9 
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Anchor I – 10 

  

Figure A1. GDMR’s Fit on Sales and Adoptions for Anchor I and Variation Scenarios 
 

Table A5. Model Estimation and Forecasting Performance for Anchor II and Variation 
Scenarios 

 
 

 
Parameters Estimates 

 
Model Fit 
(MAPE) 

 
Three-Years-

Ahead 
GDMR Sales 

Forecast 
(MAPE) 

 
 β p q m Adoption Sales  

Anchor II– 1 0.44 
(***) 

0.002 
(*) 

0.93 
(***) 

961 
(***) 

16.0 10.6 4.9 

Changing Average 
Service Life 

       

Anchor II – 2 0.44 
(***) 

0.002 
(***) 

1.0 
(***) 

933.9 
(***) 

15.7 9.3 16.6 

Anchor II – 3 0.37 
(***) 

0.002 
(***) 

1.0 
(***) 

938.0 
(***) 

15.6 8.8 16.1 

Anchor II – 4 0.28 
(***) 

0.002 
(***) 

1.0 
(***) 

1036.1 
(***) 

18.6 12.5 25.7 

Changing Second 
Adoption Percent 

       

Anchor II – 5 0.38 
(***) 

0.003 
(***) 

0.86 
(***) 

945.8 
(***) 

29.2 16.1 7.0 

Anchor II – 6 0.36 
(***) 

0.005 
(**) 

0.76 
(***) 

887.0 
(***) 

19.8 58.0 6.6 

Changing the 
Departure Start 
Time 

       

Anchor II – 7 0.39 
(***) 

0.002 
(***) 

1 
(***) 

10.25.0 
(***) 

14.3 12.2 24.8 

Changing 
Departure 
Percentage 

       

Anchor II – 8 0.51 
(***) 

0.002 
(*) 

1.0 
(***) 

840.6 
(***) 

20.1 11.3 18.5 

Anchor II – 9 0.33 
(***) 

0.002 
(*) 

0.96 
(***) 

1162.1 
(***) 

40.9 17.7 14.9 

5 10 15 20

50

100

150

200

250

300



63 

Changing 
Adoption 
Parameters 

       

Anchor II – 10 0.44 
(***) 

0.05 
(***) 

0.67 
(***) 

872.7 
(***) 

29.5 10.1 23.6 

 
 

 
Anchor II– 1 

 
Anchor II– 2 

 
Anchor II– 3 

 
Anchor II– 4 

 
Anchor II– 5 

 
Anchor II– 6 

 
Anchor II– 7 

 
Anchor II– 8 

 
Anchor II– 9 

 
Anchor II– 10 

  

Figure A2. GDMR’s Fit on Sales and Adoptions for Anchor II and Variation Scenarios 
 

Table A6. Model Estimation and Forecasting Performance for Anchor III and Variation 
Scenarios 

 
 

 
Parameters Estimated by Fitting the 

GDMR on the Simulated Sales Trend 
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 β p q m Adoption Sales  
Anchor III– 1 0.5 

(***) 
0.004 
(**) 

0.5 
(***) 

944.6 
(***) 

43.4 13.8 46.7 

Changing Average 
Service Life 

       

Anchor III – 2 0.53 
(***) 

0.003 
(**) 

0.57 
(***) 

828.6 
(***) 

21.3 11.28 27.0 

Anchor III – 3 0.5 
(***) 

0.002 
(**) 

0.64 
(***) 

773.2 
(***) 

29.1 14.4 30.4 

Anchor III – 4 0.43 
(***) 

0.001 
(**) 

0.67 
(***) 

730.3 
(***) 

34.1 16.5 27.5 

Changing Second 
Adoption Percent 

       

Anchor III – 5 0.44 
(***) 

0.004 
(**) 

0.46 
(***) 

997.8 
(***) 

70.1 19.1 62.7 

Anchor III – 6 0.60 
(***) 

0.005 
(**) 

0.42 
(***) 

96.9 
(***) 

99.5 21.6 67.6 

Changing the 
Departure Start 
Time 

       

Anchor III – 7 0.45 
(***) 

0.003 
(**) 

0.50 
(***) 

1048.7 
(***) 

60.0 13.3 56.3 

Anchor III – 8 0.42 
(***) 

0.003 
(***) 

0.05 
(***) 

1113.0 
(***) 

67.0 12.3 32.2 

Changing 
Departure 
Percentage 

       

Anchor III – 9 0.63 
(***) 

0.003 
(**) 

0.58 
(***) 

700.7 
(***) 

26.0 12.7 27.9 

Anchor III – 10 0.36 
(***) 

0.004 
(**) 

0.44 
(***) 

1368.3 
(***) 

154.0 21.1 74.8 

Changing 
Adoption 
Parameters 

       

Anchor III – 11 0.41 
(***) 

0.04 
(***) 

0.37 
(***) 

1070.3 
(***) 

48.2 8.9 10.1 
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Figure A3. GDMR’s Fit on Sales and Adoptions for Anchor III and Variation Scenarios 
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